Скорость движения воды в системе отопления

Диаметр трубопроводов, скорость течения и расход теплоносителя.

Данный материал предназначен понять, что такое диаметр, расход и скорость течения. И какие связи между ними. В других материалах будет подробный расчет диаметра для отопления.

Для того чтобы вычислить диаметр необходимо знать:

1. Расход теплоносителя (воды) в трубе.
2. Сопротивление движению теплоносителя (воды) в трубе определенной длины.

Вот необходимые формулы, которые нужно знать:

Скорость движения воды в системе отопления

S-Площадь сечения м 2 внутреннего просвета трубы
π-3,14-константа – отношение длины окружности к ее диаметру.
r-Радиус окружности, равный половине диаметра, м
Q-расход воды м 3 /с
D-Внутренний диаметр трубы, м
V-скорость течения теплоносителя, м/с

Сопротивление движению теплоносителя.

Любой движущийся внутри трубы теплоноситель, стремиться к тому, чтобы прекратить свое движение. Та сила, которая приложена к тому, чтобы остановить движение теплоносителя – является силой сопротивления.

Это сопротивление, называют – потерей напора. То есть движущийся теплоноситель по трубе определенной длины теряет напор.

Напор измеряется в метрах или в давлениях (Па). Для удобства в расчетах необходимо использовать метры.

Для того, чтобы глубже понять смысл данного материла, рекомендую проследить за решением задачи.

В трубе с внутренним диаметром 12 мм течет вода, со скоростью 1м/с. Найти расход.

Решение: Необходимо воспользоваться вышеуказанными формулами:

1. Находим сечение
2. Находим расход
D=12мм=0,012 м
п=3,14

S=3.14•0,012 2 /4=0,000113 м 2

Q=0,000113•1=0,000113 м 3 /с = 0,4 м 3 /ч.

Скорость движения воды в системе отопления

Имеется насос, создающий постоянный расход 40 литров в минуту. К насосу подключена труба протяженностью 1 метр. Найти внутренний диаметр трубы при скорости движения воды 6 м/с.

Q=40л/мин=0,000666666 м 3 /с

Из выше указанных формул получил такую формулу.

Скорость движения воды в системе отопления

Каждый насос имеет вот такую расходно-сопротивляемую характеристику:

Скорость движения воды в системе отопления

Это означает, что наш расход в конце трубы будет зависеть от потери напора, которое создается самой трубой.

Чем длиннее труба, тем больше потеря напора.
Чем меньше диаметр, тем больше потеря напора.
Чем выше скорость теплоносителя в трубе, тем больше потеря напора.
Углы, повороты, тройники, заужения и расширение трубы, тоже увеличивают потерю напора.

Более детально потеря напора по длине трубопровода рассматривается в этой статье:

А теперь рассмотрим задачу из реального примера.

Скорость движения воды в системе отопления

Стальная (железная) труба проложена длиной 376 метров с внутренним диаметром 100 мм, по длине трубы имеются 21 отводов (угловых поворотов 90°С). Труба проложена с перепадом 17м. То есть труба относительно горизонта идет вверх на высоту 17 метров. Характеристики насоса: Максимальный напор 50 метров (0,5МПа), максимальный расход 90м 3 /ч. Температура воды 16°С. Найти максимально возможный расход в конце трубы.

D=100 мм = 0,1м
L=376м
Геометрическая высота=17м
Отводов 21 шт
Напор насоса= 0,5 МПа (50 метров водного столба)
Максимальный расход=90м 3 /ч
Температура воды 16°С.
Труба стальная железная

Найти максимальный расход = ?

Решение на видео:

Для решения необходимо знать график насосов: Зависимость расхода от напора.

Скорость движения воды в системе отопления

В нашем случае будет такой график:

Скорость движения воды в системе отопления

Смотрите, прерывистой линией по горизонту обозначил 17 метров и на пересечение по кривой получаю максимально возможный расход: Qmax.

По графику я могу смело утверждать, что на перепаде высоты, мы теряем примерно: 14 м 3 /час. (90-Qmax=14 м 3 /ч).

Ступенчатый расчет получается потому, что в формуле существует квадратичная особенность потерь напора в динамике (движение).

Поэтому решаем задачу ступенчато.

Поскольку мы имеем интервал расходов от 0 до 76 м 3 /час, то мне хочется проверить потерю напора при расходе равным: 45 м 3 /ч.

Находим скорость движения воды

Скорость движения воды в системе отопления

Q=45 м 3 /ч = 0,0125 м 3 /сек.

V = (4•0,0125)/(3,14•0,1•0,1)=1,59 м/с

Находим число рейнольдса

Скорость движения воды в системе отопления

ν=1,16•10 -6 =0,00000116. Взято из таблици. Для воды при температуре 16°С.

Δэ=0,1мм=0,0001м. Взято из таблицы, для стальной (железной) трубы.

Далее сверяемся по таблице, где находим формулу по нахождению коэффициента гидравлического трения.

У меня попадает на вторую область при условии

10•D/Δэ 0.25 =0,11•( 0,0001/0,1 + 68/137069) 0,25 =0,0216

Далее завершаем формулой:

h=λ•(L•V 2 )/(D•2•g)= 0,0216•(376•1,59•1,59)/(0,1•2•9,81)=10,46 м.

Как видите, потеря составляет 10 метров. Далее определяем Q1, смотри график:

Скорость движения воды в системе отопления

Теперь делаем оригинальный расчет при расходе равный 64м 3 /час

Q=64 м 3 /ч = 0,018 м 3 /сек.

V = (4•0,018)/(3,14•0,1•0,1)=2,29 м/с

λ=0,11( Δэ/D + 68/Re ) 0.25 =0,11•( 0,0001/0,1 + 68/197414) 0,25 =0,021

h=λ•(L•V 2 )/(D•2•g)= 0,021•(376•2,29 •2,29)/(0,1•2•9,81)=21,1 м.

Отмечаем на графике:

Qmax находится на пересечении кривой между Q1 и Q2 (Ровно середина кривой).

Скорость движения воды в системе отопления

Ответ: Максимальный расход равен 54 м 3 /ч. Но это мы решили без сопротивления на поворотах.

Для проверки проверим:

Q=54 м 3 /ч = 0,015 м 3 /сек.

V = (4•0,015)/(3,14•0,1•0,1)=1,91 м/с

λ=0,11( Δэ/D + 68/Re ) 0.25 =0,11•( 0,0001/0,1 + 68/164655) 0,25 =0,0213

h=λ•(L•V 2 )/(D•2•g)= 0,0213•(376•1,91•1,91)/(0,1•2•9,81)=14,89 м.

Читайте так же:  Дрова из клена отзывы

Итог: Мы попали на Нпот=14,89=15м.

А теперь посчитаем сопротивление на поворотах:

Формула по нахождению напора на местном гидравлическом сопротивление:

Скорость движения воды в системе отопления

h-потеря напора здесь она измеряется в метрах.
ζ-Это коэффициент сопротивления. Для колена он равен примерно одному, если диаметр меньше 30мм.
V-скорость потока жидкости. Измеряется [Метр/секунда].
g-ускорение свободного падения равен 9,81 м/с2

ζ-Это коэффициент сопротивления. Для колена он равен примерно одному, если диаметр меньше 30мм. Для больших диаметров он уменьшается. Это связано с тем, что влияние скорости движения воды по отношению к повороту уменьшается.

Смотрел в разных книгах по местным сопротивлениям для поворота трубы и отводов. И приходил часто к расчетам, что один сильный резкий поворот равен коэффициенту единице. Резким поворотом считается, если радиус поворота по значению не превышает диаметр. Если радиус превышает диаметр в 2-3 раза, то значение коэффициента значительно уменьшается.

Скорость 1,91 м/с

h=ζ•(V 2 )/2•9,81=(1•1,91 2 )/( 2•9,81)=0,18 м.

Это значение умножаем на количество отводов и получаем 0,18•21=3,78 м.

Ответ: при скорости движения 1,91 м/с, получаем потерю напора 3,78 метров.

Давайте теперь решим целиком задачку с отводами.

При расходе 45 м 3 /час получили потерю напора по длине: 10,46 м. Смотри выше.

При этой скорости (2,29 м/с) находим сопротивление на поворотах:

h=ζ•(V 2 )/2•9,81=(1•2,29 2 )/(2•9,81)=0,27 м. умножаем на 21 = 5,67 м.

Складываем потери напора: 10,46+5,67=16,13м.

Отмечаем на графике:

Скорость движения воды в системе отопления

Решаем тоже самое только для расхода в 55 м 3 /ч

Q=55 м 3 /ч = 0,015 м 3 /сек.

V = (4•0,015)/(3,14•0,1•0,1)=1,91 м/с

λ=0,11( Δэ/D + 68/Re ) 0.25 =0,11•( 0,0001/0,1 + 68/164655) 0,25 =0,0213

h=λ•(L•V 2 )/(D•2•g)= 0,0213•(376•1,91•1,91)/(0,1•2•9,81)=14,89 м.

h=ζ•(V 2 )/2•9,81=(1•1,91 2 )/( 2•9,81)=0,18 м. умножаем на 21 = 3,78 м.

Складываем потери: 14,89+3,78=18,67 м

Рисуем на графике:

Скорость движения воды в системе отопления

Ответ: Максимальный расход=52 м 3 /час. Без отводов Qmax=54 м 3 /час.

В итоге, на размер диаметра влияют:

1. Сопротивление, создаваемое трубой с поворотами
2. Необходимый расход
3. Влияние насоса его расходно-напорной характеристикой

Если расход в конце трубы меньше, то необходимо: Либо увеличить диаметр, либо увеличить мощность насоса. Увеличивать мощность насоса не экономично.

Данная статья является частью системы: Конструктор водяного отопления

Скорость движения воды в системе отопленияСкорость движения воды в системе отопленияГидравлический расчёт системы отопления с учетом трубопроводов.

При проведении дальнейших расчетов мы будем использовать все основные гидравлические параметры, в том числе расход теплоносителя, гидравлическое сопротивление арматуры и трубопроводов, скорость теплоносителя и т.д. Между данными параметрами есть полная взаимосвязь, на что и нужно опираться при расчетах.

К примеру, если повысить скорость теплоносителя, одновременно будет повышаться гидравлическое сопротивление у трубопровода. Если повысить расход теплоносителя, с учетом трубопровода заданного диаметра, одновременно возрастет скорость теплоносителя, а также гидравлическое сопротивление. И чем больше будет диаметр трубопровода, тем меньше будет скорость теплоносителя и гидравлическое сопротивление. На основе анализа данных взаимосвязей, можно превратить гидравлический расчет системы отопления (программа расчета есть в сети) в анализ параметров эффективности и надежности работы всей системы, что, в свою очередь, поможет снизить расходы на использующиеся материалы.

Отопительная система включает в себя четыре базовых компонента: теплогенератор, отопительные приборы, трубопровод, запорная и регулирующая арматура. Данные элементы имеют индивидуальные параметры гидравлического сопротивления, которые нужно учесть при проведении расчета. Напомним, что гидравлические характеристики не отличаются постоянством. Ведущие производители материалов и отопительного оборудования в обязательном порядке указывают информацию по удельным потерям давления (гидравлические характеристики) на производимое оборудование или материалы.

Например, расчет для полипропиленовых трубопроводов компании FIRAT существенно облегчается за счет приведенной номограммы, в которой указываются удельные потери давления или напора в трубопроводе для 1 метра погонного трубы. Анализ номограммы позволяет четко проследить обозначенные выше взаимосвязи между отдельными характеристиками. В этом и состоит основная суть гидравлических расчетов.

Гидравлический расчет систем водяного отопления: расход теплоносителя

Думаем, вы уже провели аналогию между термином «расход теплоносителя» и термином «количество теплоносителя». Так вот, расход теплоносителя будет напрямую зависеть от того, какая тепловая нагрузка приходится на теплоноситель в процессе перемещения им тепла к отопительному прибору от теплогенератора.

Гидравлический расчет подразумевает определение уровня расхода теплоносителя, касательно заданного участка. Расчетный участок представляет собой участок со стабильным расходом теплоносителя и с постоянным диаметром.

Гидравлический расчет систем отопления: пример

Если ветка включает в себя десять киловаттных радиаторов, а расход теплоносителя рассчитывался на перенос энергии тепла на уровне 10 киловатт, то расчетный участок будет представлять собой отрезом от теплогенератора до радиатора, который в ветке является первым. Но только при условии, что данный участок характеризуется постоянным диаметром. Второй участок располагается между первым радиатором и вторым радиатором. При этом, если в первом случае высчитывался расход переноса 10-киловаттной тепловой энергии, то на втором участке расчетное количество энергии будет составлять уже 9 киловатт, с постепенным уменьшением по мере проведения расчетов. Гидравлическое сопротивление должно рассчитываться одновременно для подающего и обратного трубопровода.

Читайте так же:  Постоянное завоздушивание системы отопления

Гидравлический расчет однотрубной системы отопления подразумевает вычисление расхода теплоносителя

для расчетного участка по следующей формуле:

Qуч –тепловая нагрузка расчетного участка в ваттах. К примеру, для нашего примера нагрузка тепла на первый участок будет составлять 10000 ватт или 10 киловатт.

с (удельная теплоемкость для воды) – постоянная, равная 4,2 кДж/(кг•°С)

tг –температура горячего теплоносителя в отопительной системе.

tо –температура холодного теплоносителя в отопительной системе.

Гидравлический расчет системы отопления: скорость потока теплоносителя

Минимальная скорость теплоносителя должна принимать пороговое значение 0,2 — 0,25 м/с. Если скорость будет меньше, из теплоносителя будет выделяться избыточный воздух. Это приведет к появлению в системе воздушных пробок, что, в свою очередь, может служить причиной частичного или полного отказа отопительной системы. Что касается верхнего порога, то скорость теплоносителя должна достигать 0,6 — 1,5 м/с. Если скорость не будет подниматься выше данного показателя, то в трубопроводе не будут образовываться гидравлические шумы. Практика показывает, что оптимальный скоростной диапазон для отопительных систем составляет 0,3 — 0,7 м/с.

Если есть необходимость рассчитать диапазон скорости теплоносителя более точно, то придется брать в расчет параметры материала трубопроводов в отопительной системе. Точнее, вам понадобится коэффициент шероховатости для внутренней трубопроводной поверхности. К примеру, если речь идет о трубопроводах из стали, то оптимальной считается скорость теплоносителя на уровне 0,25 — 0,5 м/с. Если трубопровод полимерных или медный, то скорость можно увеличить до 0,25 – 0,7 м/с. Если хотите перестраховаться, внимательно почитайте, какая скорость рекомендуется производителями оборудования для систем отопления. Более точный диапазон рекомендованной скорости теплоносителя зависит от материала трубопроводов применяемых в системе отопления а точнее от коэффициента шероховатости внутренней поверхности трубопроводов. Например для стальных трубопроводов лучше придерживаться скорости теплоносителя от 0,25 до 0,5 м/с для медных и полимерных (полипропиленовые, полиэтиленовые, металлопластиковые трубопроводы) от 0,25 до 0,7 м/с либо воспользоваться рекомендациями производителя при их наличии.

Расчет гидравлического сопротивления системы отопления: потеря давления

Потеря давления на определенном участке системы, которую также называют термином «гидравлическое сопротивление», представляет собой сумму всех потерь на гидравлическое трение и в локальных сопротивлениях. Данный показатель, измеряемый в Па, высчитывается по формуле:

ΔPуч=R* l + ( (ρ * ν2) / 2) * Σζ

ν — скорость используемого теплоносителя, измеряемая в м/с.

ρ — плотность теплоносителя, измеряемая в кг/м3.

R –потери давления в трубопроводе, измеряемые в Па/м.

l – расчетная длина трубопровода на участке, измеряемая в м.

Σζ — сумма коэффициентов локальных сопротивлений на участке оборудования и запорно-регулирующей арматуры.

Что касается общего гидравлического сопротивления, то оно представляет собой сумму всех гидравлических сопротивлений расчетных участков.

Гидравлический расчет двухтрубной системы отопления: выбор основной ветви системы

Если система характеризуется попутным движением теплоносителя, то для двухтрубной системы выбирается кольцо самого загруженного стояка через нижний прибор отопления. Для однотрубной системы – кольцо через самый загруженный стояк.

Если система характеризуется тупиковым движением теплоносителя, то для двухтрубной системы выбирается кольцо нижнего прибора отопления для самого загруженного из наиболее удаленных стояков. Соответственно, для однотрубной отопительной системы выбирается кольцо через наиболее загруженный из удаленных стояков.

Если речь идет о горизонтальной отопительной системе, то выбирается кольцо через наиболее загруженную ветвь, относящуюся к нижнему этажу. Говоря о загрузке, мы имеем в виду показатель «тепловая нагрузка», который был описан выше.

Скорость движения воды в трубах системы отопления.

На лекциях нам говорили, что оптимальная скорость движения воды в трубопроводе 0,8-1,5 м/с. На некоторых сайтах встречаю подобное (конкретно про максимальную в полтора метра в секунду).

НО в методичке сказано принимать потери на метр погонный и скорости – по приложению в методичке. Там скорости ну совсем другие, максимальная, что есть в табличке – как раз 0,8 м/с.

И в учебнике встретил пример расчета, где скорости не превышают 0,3-0,4 м/с.

Дак в чем же суть? Как вообще принимать (и как в реальности, на практике)?

Скрин таблички из методички прилагаю.

За ответы всем заранее спасибо!

Ты чего хочешь-то? “Военную тайну” (как на самом деле надо делать) узнать, или курсовик сдать? Если только курсовик – то по методичке, которую преподаватель и написал и ничего иного не знает и знать не хочет. И если сделаешь как надо, еще и не примет.

Читайте так же:  Дверь в воротах гаража

0.036*G^0.53 – для стояков отопления

0.034*G^0.49 – для ммагистралей ветки, пока нагрузка не уменьшится до 1/3

0.022*G^0.49 – для концевых участков ветки с нагрузкой в 1/3 от всей ветки

В курсовике то я посчитал как по методичке. Но хотел узнать, как по делу обстановка.

Тоесть получается в учебнике (Староверов, М. Стройиздат) тоже не верно (скорости от 0,08 до 0,3-0,4). Но возможно там только пример расчета.

Offtop: Тоесть вы тоже подтверждайте, что по сути старые (относительно) СНиПы вполне ничем не уступают новым, а где то даже лучше. (нам об этом многие преподаватели говорят. По ПСП вообще декан говорит, что их новый СНиП во многом противоречит и законам и самому себе).

Но в принципе все пояснили.

а расчет на уменьшение диаметров по ходу потока вроде экономит материалы. но увеличивает трудозатраты на монтаж. если труд дешевый-возможно имеет смысл. если труд дорогой – никакого смысла нет. И если на большои длине (теплотрасса) изменение диаметра выгодно -в пределах дома возня с этими диаметрами не имеет смысла.

и еще есть понятие гидравлическои устойчивости системы отопления – и здесь выигрывают схемы ShaggyDoc

Каждый стояк (верхняя разводка) отключаем вентилем от магистрали. Дак вот встречал, что сразу после вентиля ставят краны двойной регулировки. Целесообразно?

И чем отключать сами радиаторы от подводок: вентилями, или ставить кран двойной регулировки, или и то и то? (тоесть если бы этот кран мог полностью перекрывать трупровод – то вентиль тогда вообще не нужен?)

И с какой целью изолируют участки трубопровода? (обозначение – спиралью)

Система отопления двухтрубная.

Мне конкретно по подающему трубопроводу узнать, вопрос выше.

У нас есть коэффициент местного сопротивления на вход потока с поворотом. Конкретно применяем на вход через жалюзийную решетку в вертикальный канал. И коэффициент этот равен 2,5 – что есть не мало.

Тоесть как бы так придумать, чтобы избавиться от этого. Один из выходов – если решетка будет “в потолке”, и тогда входа с поворотом не будет (хотя небольшой все же будет, так как воздух будет стягиваться по потолку, двигаясь горизонтально, и двигаться к этой решетке, поворачивать на вертикальное направление, но по логике это должно быть меньше, чем 2,5).

В многоквартирном дме решетку в потолке не сделаешь, соседи. а в одноквартирном – потолок не красивый с решеткой будет, да и мусор может попасть. тоесть проблему так не решить.

Скорость движения воды в системе отопления

часто сверлю, потом затыкаю

Возьмите тепловую мощность и начальную с конечной температуры. По этим данным Вы совершенно достоверно посчитаете

скорость. Она, скорее всего, будет максимум 0.2 мС. БОльшие скорости – нужен насос.

Типичные скорости (практические скорости) потока жидкости в трубопроводах (трубах) в различных технологических и коммунальных сетях. Водопровод. Канализация. Теплоснабжение (отопление).

Комфортной (не вызывающей излишней коррозии / эрозии или шума в трубопроводах) считается скорость до 1,5 м/с. Приемлемой – до 2,5 м/с. А практически встречающиеся скорости см. в таблице ниже:

Самоциркулирующее теплоснабжение – скорость потока 0,2-0,5 Теплоснабжение с принудительной циркуляцией основная “прямая труба” – скорость потока 0,5-3 (выше – не стоит подключать новые нагрузки) Теплоснабжение с принудительной циркуляцией – отводы на батареи = радиаторы – скорость потока 0,2-0,5 Водоснабжение магистральное – скорость потока 0,5-4 (выше – не стоит подключать новые нагрузки) Водоснабжение ХВС и ГВС (разбор воды) – скорость потока 0,5-1 (выше – потребители не оценят фонтан. ) Циркуляция в системе ГВС – скорость потока 0,2-0,5 ( выше никому не нужно) Промышленное холодоснабжение основная “прямая труба” – скорость потока 0,5-3 (до 5 м/с) Промышленное холодоснабжение отводы на холодильные радиаторы камер – скорость потока 0,2-0,5 Канализация, безнапорная, в том числе ливневая – скорость потока 0,5-1 (до 3 м/с)

Дополнительная информация: “. Скорость потока учитывается только для определения диаметра трубопровода. При неправильном выборе диаметра (скорость потока для: жидкой среды от 3 до 10 м/с; газообразной – свыше 20 м/с) будет наблюдаться повышенная вибрация трубопровода и образование статического электричества. Кавитация от скорости не зависит, а только от перепада давления и давления насыщенных паров перекачиваемой жидкости.” ТПА номер 5(86) 2016 г – Якименко В.К. ЗАО “ТюменьВНИПИнефть”

Консультации и техническая
поддержка сайта: Zavarka Team

“>

Оцените статью
Adblock
detector