Схемы электрические принципиальные платы управления газовым котлом

В последнее время стоимость централизованного отопления растет месяц от месяца, а качество предоставляемых услуг не всегда соответствует установленным нормам. В качестве выхода из положения многие жители сделали для себя выбор в пользу индивидуального отопления, в основе которого лежит котел и независимая разводка труб по жилищу. Хозяева ставят перед собой цель получить как можно более дешевое отопление с максимальной эффективностью и теплоотдачей. На данный момент в этой связи все большую популярность набирают одно- и двухконтурные газовые котлы отечественного и импортного производства. Отдельного внимания заслуживает схема электрического отопления, но целью этой статьи является объяснить, как работает электрическая схема котла, работающего на газу.

Современный газовый котел – это сложное электротехническое устройство, способное с помощью подводимого газа нагревать проходящую через него воду, которая, проходя через радиаторы, будет не только согревать комнаты, но и поступать к кранам горячего водоснабжения. Газовые котлы, как известно, могут быть настенными и напольными, атмосферными и турбированными. В независимости, имеет ли оборудование один контур или два, любой из современных экземпляров снабжен довольно сложной электрической схемой, отвечающей за многие его функции. В этой статье мы рассмотрим основные его узлы, принцип их работы, предназначение и управление функциональными модулями и блоками. В окончании статьи мы приведем пример схемы электрического котла, который используется в качестве замены газовому оборудованию в регионах, где цена газа довольно высока.

Читайте так же:  Герметик для резьбы высокого давления

Основные функциональные блоки котла

Перед тем, как приступить к описанию электрической схемы котла нам необходимо описать его основные функциональные блоки, а так же объяснить их предназначение и принцип работы. В качестве примера будем использовать известный и популярный газовый настенный котел Ariston модели City (для Италии) / Uno (для других стран) модификации 24MFFI. В данном случае 24 – это максимальная мощность подогрева горячей воды в кВт, M – комбинированная система отопления и приготовления горячей воды, FF – определяет наличие в котле закрытой камеры сгорания и применение дополнительного вытяжного вентилятора (котел турбированный), I – электронный контроль пламени горелки. Открыв переднюю защитную крышку котла, мы увидим:

Схемы электрические принципиальные платы управления газовым котлом Схемы электрические принципиальные платы управления газовым котлом

1. Реле с датчиком, определяющее давление воздуха, которое отслеживает состояние вытяжной системы и, в случае изменения давления за пределы допустимых границ, электроника отключает подачу пламени на газовую горелку, а индикатор внешней панели сигнализирует об ошибке. Это устройство называют релейным датчиком тяги.

2. Вентилятор – собственно, основной элемент «турбированности» котла, который осуществляет принудительную вытяжную вентиляцию продуктов горения газа, а так же дает возможность прикреплять к котлу довольно длинную вытяжную трубу. Причем прошивкой главного управляющего процессора предусмотрен неотключаемый режим предварительного управления вентиляцией, когда перед воспламенением горелки включается вентилятор. Если с ним возникнут проблемы, котел уйдет в ошибку.

3. Датчик температуры на выходе основного теплообменника (NTC) – очень важный элемент в электрической схеме любого котла, который контролирует температуру воды, передает данные в виде изменения напряжения на нем электронной плате управления. С помощью этого датчика котел может поддерживать постоянную заданную температуру на выходе, а так же сможет оперативно отключить горелку в случае неисправности отопительного водяного конура или отсутствия минимального давления воды в системе. Данный датчик имеет отрицательную температурную характеристику. При температуре в 0 С градусов его контакты имеют сопротивление 27кОм, а при температуре + 80 С, сопротивление датчика уменьшается до 1,5 кОм. Таким образом, при увеличении температуры воды на выходе теплообменника, на плату поступает большее напряжение управления, которое котел отрабатывает, уменьшая степень горения пламени. Датчик температуры организует обратную связь по температуре воды на выходе.

Читайте так же:  Станок для резки минеральной ваты

4. Электронная плата – основной контролирующий и регулирующий узел работы газового котла. На процессор платы приходят все напряжения с установленных датчиков, а так же подключены регуляторы температуры, индикатор давления/температуры и кнопки управления котлом. Электронная плата является «мозгом» котла. Ее описание и принцип работы мы рассмотрим ниже.

5. Расширительный бак – включен в контур отопительной системы как элемент регулировки избытка воды в случае ее неизбежного расширения при нагреве. За счет применения расширительного бака давление системы остается стабильным вне зависимости от температуры. Максимальная температура воды не должна превышать + 90 С градусов, а давление в системе не выше 3 bar.

6. Датчик температуры воды (NTC), приходящей по «обратке» в основной теплообменник (втекающей воды). Благодаря этому датчику процессор знает, насколько открыть газовую горелку и увеличить подачу газа, чтобы достичь подогрева воды в теплообменнике до заданного уровня.

7. Основной теплообменник – представляет собой змеевик с радиатором из цветных металлов (из меди или алюминия), в котором происходит подогрев воды с использованием специальной газовой горелки (8), расположенной непосредственно под ним. В теплообменнике предусмотрены отверстия для установки температурных датчиков 3 и 6.

8. Газовая горелка – управляется газовым клапаном, который представляет собой сложное устройство с управляемым процессором газовым портом. Газовый клапан состоит из: 1 основного газового порта, 2 управляющего порта, 3 модулятора давления газа (датчика, фиксирующего давления газа в системе). Газовый клапан — это очень сложное устройство, отъюстированное на заводе изготовителе. Его ремонт и настройка должны осуществляться только опытным и подготовленным специалистом.

9. Привод трехходового клапана – представляет собой 3-х выводное электромагнитное реле, которое переключает ход протекающей подогретой воды либо в отопительную систему, либо на кран горячей воды. Из-за ее плохого качества 3-х ходовой клапан часто ломается, в результате чего перестает работать отопление или из горячего крана течет холодная вода. Таким образом, происходит реализация и отопления, и подогрев горячей воды с помощью одного контура подогрева (котел одноконтурный).

10. Циркуляционный насос – производит прокачку воды по отопительной системе. Такие насосы так же устанавливают в газовые котлы Ferroli, Immergas, Hermann. Со временем, из-за старения и качества воды «мокрый» ротор насоса имеет свойство подклинивать, поэтому на его передней части предусмотрен винтовой болт, под которым присутствует сам ротор, который можно провернуть отверткой и осуществить принудительный пуск. Данная заглушка предназначена для спуска воздуха из жидкой роторной камеры. Подклинивание насоса с уходом котла в защиту из-за перегрева теплообменника – второй признак того, что котел и, собственно, сам насос нуждается в чистке и ревизии. Первым признаком является ухудшение обогрева помещения котлом, в результате чего владелец вынужден увеличивать температуру регулятором.

Кроме указанных элементов в процессе розжига особую роль играет генератор искры со специальным трансформатором зажигания. Генератор искры работает совместно с газовым клапаном и является неотъемлемой его частью. Он состоит из: 1 – вывода, подсоединенного к электроду розжига, 2 – крепление к датчику протока с заземляющим контактом, 3 – защищенным гнездом для подключения переменного сетевого напряжения 220 В.

Датчик протока воды – крепится за генератором искры и трансформатором зажигания непосредственно в систему ГВС. С помощью этого датчика система определяет наличие движения воды, а так же осуществляется контроль работы циркуляционного насоса. Как правило такие датчики бывают двух типов. Дешевые датчики имеют магнитный поплавок с герконом. Более дорогие модели – вентилятор и датчик Холла. Дорогие датчики могут определять не только наличие потока воды, но и ее скорость.

Электронная плата управления и электрическая схема котла

Электронная плата управления

Как мы уже говорили, плата управления осуществляет полный контроль и управление всеми режимами и функциями нашего котла. В основе ее работы лежит фирменный микропроцессор, который управляет работой всей электронной части и память Atmel 93C56WP, в которую зашита прошивка котла. Блок питания аналоговый, со стабилизацией напряжения на «кренках». Он не имеет защит от перегрузки и превышения лимитов напряжения питания. Именно поэтому стоит заранее побеспокоиться о специализированных сетевых фильтрах и барьерах. Это же утверждение касается любого другого котла. Для управления прессостатом, трехходовым и газовым клапаном, используются электромагнитные реле на 33 вольта. Утеря контроля пламени – основная болезнь этой модели. В этом случае необходимо проверить радиоэлементы, которые относятся к этой функции, а особенно неполярный конденсатор C903 на 0.1 мкФ х 275В (на рисунке внизу синий). Так же необходимо проверить рядом стоящие транзисторы, оптрон cny17-3 и обрыв резисторов мощностью 1 Вт. Так же можно воспользоваться схемой ниже. В различного рода проблемах часто бывают виноваты сами управляющие реле (при включении/выключении режимов котла они должны тихо щелкать), а так же микросхема ULN2003N, в которой находятся 7 ключей Дарлингтона. Сигналы с микропроцессора приходят на микросхему, усиливаются ею и передаются на реле.

Схемы электрические принципиальные платы управления газовым котлом Схемы электрические принципиальные платы управления газовым котлом

Электрическая схема котла

Электрическая схема котла состоит из обозначения основных блоков электронных плат и радиоэлементов на них, которые участвуют в работе, настройке и управлении газовым котлом. На рисунке ниже:

Схемы электрические принципиальные платы управления газовым котлом

А – регулятор температуры котла (по паспорту переключатель зима — лето), а по сути, переменное сопротивление, варьирующее напряжением управления.

B – кнопка сброса ошибки и перезапуска котла (Reset).

С – включение/выключение котла (Power).

D – кнопка включения режима комфорта.

E – сопротивление, регулирующее температуру горячей воды в кране.

F, G, H, I – светодиоды — индикаторы контроля работы или неисправности оборудования.

J – гнездо для подключения внешнего таймера

K и L – реле подачи питания на насос и трехходовой клапан соответственно.

M и N – реле управления вентилятором и газовым клапаном.

O – разъем подключения пульта управления.

P, Q, R, S – перемычки, которые устанавливают мощность искрообразования, задержки воспламенения, выбор температурного режима и плавного воспламенения с максимальной мощностью.

T – специальный двухпроводный разъем, позволяющий подключить внешний термостат для поддержания заданной температуры в точке расположения термостата.

U – питающий трансформатор, являющийся составной частью бока питания электронной схемы управления котлом.

А11 – датчик наличия пламени

Разъем CN301 содержит контактную колодку A02 – A05, к которой подключаются газовый клапан, привод трехходового клапана, циркуляционный насос, трансформатор розжига.

К разъему CN201 (контакты А06 – А10) подключаются температурные датчики подачи и возврата воды, датчик дымохода (прессостат), датчик протока воды, модулятор.

Перемычка CN102 в положении А позволяет настроить регулятором температуры отопления мощность воспламенения горелки котла при использовании разного газа (сжиженного или газообразного) с различной калорийностью. Во время настройки красный индикатор будет мигать. Настройка подразумевает регулировку давления газа. Согласно заводским настройкам она соответствует 60% от общей мощности котла.

CN101 в положении А отключает задержку воспламенения, в положении B – задержка на 2 минуты.

CN104 – устанавливает пределы потенциометра температуры отопления. В положении А это 38 – 44 градуса, в положении В это 42 – 82 градуса.

CN100 производится настройка максимальной мощности отопления и воспламенения.

Конечно, приведенный котел Ariston UNO 24MFFI далек от эталонного примера, однако он в большей части раскрывает суть работы многих настенных газовых котлов. О принципе работы котла, его функциональности можно более подробно узнать из сервисной инструкции, которую можно скачать в интернете.

Принцип работы и электрическая схема котла, работающего на электричестве

Судя по названию, становится понятно, что основным источником энергии для такого котла является электричество. Основным нагревательным элементом электрического котла является нагревательный элемент или ТЭН. Визуально такой котел ничем не отличается от обыкновенного газового котла, однако, принцип его работы полностью другой. Использование электричества позволяет удешевить его внутренний конструктив, но отказаться от основных датчиков температуры невозможно, поскольку это в значительной степени увеличит его аварийность. Именно поэтому в электрическом котле присутствует не менее сложная система электронного управления и стабилизации мощности ТЭНа. Электрический котел состоит из:

Схемы электрические принципиальные платы управления газовым котлом

1. Воздушного автоматического клапана, стравливающего воздух и защищающий от «завоздушивания» системы.

2. Ограничителя температуры, защищающего систему котла и внутренние радиаторы помещения от перегрева.

3. Электронного пульта управления – представляющего собой специальную схему гибрида ПИД регулятора, анализирующую данные от различных датчиков котла и поддерживающую постоянную установленную температуру, а так же регулятора мощности. В самом простом варианте это тиристорная схема. В нашем случае это отдельная плата.

4. Управляемый электронным пультом управления регулятор мощности.

5. Термобак, в который встраивается нагревательный элемент. Производится из малоокисляемых цветных металлов.

6. Циркуляционный насос с «мокрым ротором» — нагнетает давление горячей воды в системе.

7. Водный узел – используется в связке с платой управления для подачи сигнала о достаточном давлении в системе и наличию циркуляции воды для подачи напряжения на ТЭНы.

8. Манометр – отображает текущее значение давления в системе.

9. Сбросовый клапан безопасности – в случае превышения критического давления (обычно более 3 бар) открывается и сбрасывает излишки воды в системе.

Данные котлы имеют высокое энергопотребление до 15 кВт. Поэтому их применяют большей частью для больших помещений и подключают к трехфазной сети переменного тока. На рисунке ниже представлен пример подключения электрического трехфазного котла.

Схемы электрические принципиальные платы управления газовым котлом

Предлагаемый микроконтроллерный блок управления разработан и изготовлен взамен не обеспечивающего достаточного удобства эксплуатации штатного блока управления электрического котла отопления "ЭВАН ЭПО-7,5/220 B". Он может быть применён и для управления другими электронагревательными приборами.

После покупки и установки котла "ЭВАН ЭПО-7,5/220 B" выявились недостатки блока управления, которым он укомплектован. Главный из них — одновременное включение и выключение трёх установленных в котле электронагревателей. Возникающие при этом броски тока и перепады напряжения в сети настолько велики, что вызывают сбои в работе некоторых, питающихся от неё же, электронных приборов. Случались даже выходы их из строя. Кроме того, мощный контактор, периодически включавший и выключавший нагреватели для поддержания заданной температуры, грохотал на весь дом, а висевший на стене блок, в котором он был установлен, при этом "подпрыгивал", пока не упал и не разбился. Было решено не ремонтировать этот блок, а разработать и изготовить новый, по возможности устранив недостатки и расширив выполняемые функции.

Новый блок управления был сделан четырёхканальным с электронной коммутацией. Три канала управляют нагревателями с разносом по времени, что значительно снижает броски потребляемого от сети тока. Контактор используется лишь для аварийного отключения нагревателей в случае перегрева котла. Четвёртый канал управляет водяным насосом системы отопления. Предусмотрен режим быстрого разогрева котла до заданной температуры при выключенном насосе с последующим его включением для подачи горячей воды в систему отопления.

Новая система, как и старая, стабилизирует температуру воды на выходе из котла, хотя есть возможность переключиться на её стабилизацию на входе. Если подключить к блоку управления датчик температуры воздуха в помещении, система автоматически переходит в режим стабилизации этого параметра.

Схема нового блока управления вместе с датчиками температуры и исполнительными устройствами (нагревателями и водяным насосом) изображена на рис. 1. Систему отопления включают и выключают выключателем SA1, подающим сетевое напряжение на модуль питания. После этого начинают работать все остальные модули блока управления. На нагреватели ЕК1-ЕК3 напряжение 220 В поступает через контактор KM1, автоматы защиты сети SA3-SA5 и модуль симисторных коммутаторов, управляемых сигналами, формируемыми в микроконтроллерном модуле. Тип контактора — NC1 -25. Когда котёл нормально работает, его контакты замкнуты.

Схемы электрические принципиальные платы управления газовым котлом

Цепь управления двигателем M2, приводящим в движение водяной насос, в которую входят автомат SA2 и один из каналов симисторного модуля, отличается лишь тем, что её размыкание контактором KM1 не предусмотрено. Это необходимо, чтобы в случае аварийного отключения нагревателей насос продолжил работать, обеспечивая циркуляцию воды в системе отопления и её ускоренное охлаждение. Теплоотводы симисторов, коммутирующих нагреватели и насос, обдувает двухскоростной компьютерный вентилятор M1 типоразмера 80x80x20 мм с напряжением питания 12 В.

К модулю симисторных коммутаторов подключены двухцветные светодиоды HL1-HL4. Их кристаллы красного цвета свечения включаются при подаче сетевого напряжения на входы соответствующих симисторных коммутаторов, а зелёные — при открывании их симисторов. В последнем случае цвет свечения светодиода становится жёлтым, это сигнализирует о том, что на нагреватель или насос сетевое напряжение подано. Диоды VD1-VD8 защищают светодиоды от обратного напряжения.

Датчики температуры воды на выходе из котла (BK1), на его входе (BK2), а также температуры воздуха в отапливаемом помещении (BK3) подключены к микроконтроллерному модулю через модуль питания и межмодульных соединений. На выводах датчиков BK1 — BK3 смонтированы детали фильтров (соответственно R1C1, R2C2, R3C3). К выводам 1, 2 датчиков и свободным выводам резисторов припаяны, согласно схеме, провода коротких отрезков стандартных USB-кабелей с вилками разъёмов USB-A.

В качестве корпусов для датчиков ВК1 и ВК2 использованы стандартные автомобильные датчики температуры охлаждающей жидкости 19-3828, из которых удалены все "внутренности". Датчики DS18B20 вместе с припаянными к ним деталями и концами кабелей вставлены в образовавшиеся полости и залиты автомобильным герметиком.

После затвердевания герметика датчик ВК1 ввинчивают на место ранее имевшегося датчика температуры воды на выходе из котла. Диаметр и шаг резьбы подходят. Чтобы установить датчик ВК2, необходимо сделать вставку с резьбовым отверстием в трубопроводе, подводящем воду к котлу.

На датчик ВКЗ и конец ведущего к нему кабеля для защиты от внешних воздействий надевают отрезок термоусаживаемой трубки. Этот датчик помещают в удалённом от источников тепла и защищённом от сквозняков месте отапливаемого помещения.

С разъёмом Х5 модуля питания и межмодульных соединений датчики ВК1-ВКЗ соединены кабелями, сделанными из USB-удлинителей с кабельными розетками USB-A. качестве термовыключателя SF1, сигнализирующего о недопустимом перегреве воды, использован ТМ108 — стандартный автомобильный выключатель вентилятора системы охлаждения двигателя. Место для его установки в котле имеется, шаг и диаметр резьбы подходят. Контакты этого выключателя замыкаются, когда температура воды в котле достигает 92 о С, что приводит к немедленному отпусканию якоря контактором KM1 и выключению всех нагревателей. Размыкаются контакты выключателя SF1 при понижении температуры воды до 87 о С.

Для анализа сигналов датчиков и формирования сигналов управления нагревателями и другими устройствами системы применён универсальный микроконтроллерный модуль, описанный в [1], со специально разработанной программой. Чтобы взамен графического ЖКИ подключить к нему светодиодные индикаторы, модуль подвергся небольшой доработке. Удалён регулировавший контрастность ЖКИ подстроечный резистор R15 (нумерация элементов модуля — согласно схеме на рис. 1 в [1]). Освободившиеся в результате этого два контакта разъёма X4 использованы для передачи дополнительных сигналов управления светодиодными индикаторами. Для этого контакт 2 соединён с выходом PC7 (выводом 28), а контакт 18 — с выходом PD7 (выводом 30) микроконтроллера DD1.

Схема подключаемого к микроконтроллерному модулю взамен ЖКИ модуля светодиодной индикации и управления изображена на рис. 2. В нём установлены трёхразрядные семиэлементные светодиодные индикаторы HG1 — HG3 с общим катодом, на которые выводятся сведения о работе котла. Они зависят от выбранного режима работы системы отопления.

Схемы электрические принципиальные платы управления газовым котлом

Информацию для отображения на индикаторах HG1-HG3 микроконтроллер формирует в виде последовательного 24-разрядного кода, который три соединённых последовательно восьмиразрядных сдвиговых регистра преобразуют в параллельный код, подаваемый на аноды элементов индикаторов. Первый из этих регистров находится в микроконтроллерном модуле (DD2 по его схеме). Он обслуживает индикатор HG1. Два других (DD1 и DD2 в рассматриваемом модуле индикации) обслуживают соответственно индикаторы HG2 и HG3. Первым в 24-разрядный регистр загружается значение старшего разряда регистра DD2, последним — значение младшего разряда регистра DD2 микроконтроллерного модуля.

Светодиоды HL1-HL3 модуля индикации отображают сформированные микроконтроллерным модулем сигналы управления нагревателями, соответственно ЕК1, ЕК2 и ЕКЗ. Светодиод HL4 включается, когда температура воды в котле падает, а HL5 — когда она растёт. С помощью кнопок SB1-SB4 переключают режимы работы системы и изменяют их параметры.

Схема модуля симисторных коммутаторов представлена на рис. 3. В нём четыре одинаковых канала. Позиционные обозначения элементов каждого из них снабжены префиксами, совпадающими с номерами каналов. Управляющие сигналы, сформированные мик-роконтроллерным модулем, поступают через разъём X1 на излучающие диоды симисторных оптронов 1U1-4U1, обеспечивающих гальваническую развязку между управляющими и исполнительными цепями.

Схемы электрические принципиальные платы управления газовым котлом

Применённые оптроны MOC3063 [2] имеют узлы привязки моментов открывания фотосимисторов к моментам перехода приложенного к ним напряжения через ноль. Это значительно уменьшает уровень коммутационных помех. Исполнительные элементы коммутаторов — мощные симисторы 1VS1-4VS1, установленные на теплоотводах, которые обдувает вентилятор M1 (см. рис. 1).

Узел управления этим вентилятором, подключаемым к разъёму X3, собран на транзисторе VT1. Сигнал включения вентилятора поступает от микроконтроллера на разъём X2 одновременно с появлением на X1 сигнала, включающего любой из нагревателей, а снимается спустя установленное время после выключения последнего из работавших нагревателей. Это обеспечивает быстрое охлаждение нагревшихся симисторов.

Все силовые входы (через резисторы 1R5-4R5) и выходы (через резисторы 1R6-4R6) каналов коммутации соединены c разъёмом XP4, к которому подключают светодиоды-индикаторы подачи сетевого напряжения на входы (контакты XT1-XT4) коммутаторов и его появления на контактах разъёма X5, к которым подключены нагреватели и насос.

На рис. 4 изображена схема модуля межмодульных соединений и питания маломощных узлов. Трансформатор Т1 понижает сетевое напряжение 220 В до 15 В, которое затем выпрямляет диодный мост VD1. После сглаживания пульсаций конденсаторами С2 и С3 выпрямленное напряжение стабилизируют интегральные стабилизаторы DA1 и DA2. Первый выдаёт напряжение 12 В для питания реле K1 и вентилятора М1 (см. рис. 1), второй — 5 В для питания микроконтроллерного модуля. В модуле питания находится также узел управления контактором аварийного отключения нагревателей, состоящий из транзистора VT1 и реле K1.

Схемы электрические принципиальные платы управления газовым котлом

Разъём ХЗ соединяют с микроконт-роллерным модулем, а Х4 — с датчиками температуры. На разъём Х5 выведены сигналы управления нагревателями и насосом, а также питающие напряжения для модуля коммутации.

Детали каждого модуля блока управления котлом монтируют на отдельной печатной плате из фольгированного стеклотекстолита толщиной 1,5 мм. Чертёж платы микроконтроллерного модуля имеется в [1]. Подстроечный резистор R15 на ней не устанавливают, а контакты 2 и 18 разъёмаX4 соединяют с указанными ранее выводами микроконтроллера перемычками из изолированного провода. Других доработок не требуется.

1. Киба В. Универсальный микроконтрол-лерный модуль с графическим ЖКИ. — Радио, 2010, № 3, с. 28-30.

2. 6-pin DIP zero-cross phototriac driver optocoupler. — http://mkpochtoi.narod.ru/ MOC3061_MOC3062_MOC3063_zerocross_ ds.pdf.

Автор: В. Киба, г. Каменск-Шахтинский Ростовской обл.

2017-08-09 Евгений Фоменко

Устройство котлов Вайлант

Схемы электрические принципиальные платы управления газовым котлом

Электрическая схема

Рассмотрим устройство котла Вайлант, используя картинки и схемы из руководства по монтажу. Для правильной настройки при установке и устранению неисправностей, необходима принципиальная электрическая схема. На ней показано, куда именно подключаются все узлы устройства к электрической плате управления.

Схемы электрические принципиальные платы управления газовым котлом

Электросхема для конкретной модели газового нагревательного аппарата может немного отличаться от стандартной. Чтобы сделать ремонт и отрегулировать конкретную модель, нужно использовать инструкцию по эксплуатации, которая идет в комплекте к каждому аппарату.

Гидравлическая схема

На гидравлической схеме работы котла обозначены все узлы, которые проходит жидкость в процессе нагревания. Снизу расположены пять труб, по две на ГВС и отопление и одна, подающая газ.

Схемы электрические принципиальные платы управления газовым котлом

В правый крайний патрубок поступает охлажденный теплоноситель из отопительной системы. Жидкость проходит через трехходовой клапан, циркуляционный насос и поступает в первичный теплообменник. Там она нагревается и выходит через фильтр из левого крайнего патрубка в систему отопления. Если выставлен приоритет горячего водоснабжения, то она проходит через вторичный теплообменник, нагревая при этом воду для бытового пользования. Управляет направлением потока теплоносителя трехходовой клапан.

Во второй с правой стороны патрубок поступает холодая чистая вода, идет во вторичный теплообменник и оттуда уже нагретая выходит во вторую слева трубу.

Особенности одно и двухконтурных моделей

Одноконтурные настенные котлы, такие как Vaillant Turbotec plus VU, отличаются простотой конструкции и компактностью. Их главным недостатком является то, что они не обеспечивают пользователя горячим водоснабжением. Для того, чтобы с помощью него нагреть проточную воду придется дополнительно покупать и устанавливать бойлер косвенного нагрева.

Схемы электрические принципиальные платы управления газовым котломКотлы Vaillant Turbotec plus VU

Двухконтурные модели, такие как Vaillant 240 оборудованы стальным вторичным теплообменником с тонкими стенками, позволяющим передавать тепло от теплоносителя к проточной воде.

Также выпускаются двухконтурные устройства с встроенным бойлером. Они отличаются большими габаритами. Бак с водой располагается у них внизу корпуса. Так устроены такие модели Вайлант как AtmoCompact и AtmoVit Combi. Рассмотрим, как работает типичный двухконтурный котел.

Принцип работы

Рассмотрим принцип работы газовых котлов Вайлант. Они предназначены для отопления помещений и нагрева воды для бытового использования. Подключаются к системе отопления с радиаторами, которые располагаются по всему дому. Когда теплоноситель внутри остывает до определенной температуры, срабатывает термостат. Он подает сигнал на плату управления.

Оттуда идет сигнал для включения циркуляционного насоса, открытия газового клапана и подачи электричества на электроды розжига. Начинает гореть газ в горелке, над которой расположен основной трубчатый теплообменник. В нем тепло передается от сгорания газа к теплоносителю в трубках.

Когда вода в системе отопления нагревается до выставленной в настройках температуры, снова срабатывает термостат и работа котла прекращается. При включении крана с горячей водой, срабатывает трехходовой клапан, который направляет нагретый теплоноситель во вторичный теплообменник. Там, через тонкие стенки тепло передается водопроводной жидкости.

В некоторых сериях, к примеру, Vailllant Turbo, возможно подключение выносного комнатного термостата. В этом случае можно настраивать обогрев на нужную температуру в помещении.

Схемы электрические принципиальные платы управления газовым котломКотлы Vailllant Turbo

Конденсационные модели, такие как Вайлант ecoTEC имеют теплообменник особенной конструкции, который позволяет дополнительно использовать тепло летучих продуктов сгорания во время их конденсации.

Область использования и технические характеристики

Газовые котлы Вайлант предназначены для отопления бытовых и производственных помещений. В зависимости от модели имеют различный диапазон мощностей. От небольших аппаратов, к примеру, Eco Compact на 4 кВт, до устройств повышенной мощности, например, Eco Craft VKK на 294 кВт. Также, при необходимости, ряд моделей способны соединяться в каскад, для складывания вырабатываемой тепловой энергии.

Выпускаются как настенные, так и напольные приборы. В зависимости от типа камеры сгорания выпускаются атмосферные и турбированные серии. К примеру, Вайлант Т3 и Т4, где Т3 оснащен атмосферной, а Т4 закрытой камерой сгорания. Теплообменник изготовляется из меди, нержавеющей стали или чугуна.

Все аппараты оснащены современными устройствами защиты: от замерзания, перегрева, тушения пламени и отсутствия тяги. Отдельные приборы могут работать как от природного, так и от сжиженного газа. Все котлы имеют электронную систему управления и автоматический розжиг. Модулируемые горелки позволяют плавно изменять необходимую интенсивность работы.

Оцените статью