Рабочее давление испытательное давление

Гидравлическое испытание [1] — один из наиболее часто используемых видов неразрушающего контроля, проводящееся с целью проверки прочности и плотности сосудов, трубопроводов, теплообменников, насосов и другого оборудования, работающего под давлением, их деталей и сборочных единиц. Также гидравлическим испытаниям могут подвергаться схемы тепломеханического оборудования в сборе и даже целые тепловые сети. По принятой в большинстве стран практике, всё оборудование, работающее под давлением, подвергают гидравлическим испытаниям:

  • после изготовления предприятием-изготовителем оборудования или элементов трубопроводов, поставляемых на монтаж;
  • после монтажа оборудования и трубопроводов;
  • в процессе эксплуатации оборудования и трубопроводов, нагружаемых давлением воды, пара или пароводяной смеси.

Гидравлическое испытание — необходимая процедура, свидетельствующая о надёжности оборудования и трубопроводов, работающих под давлением, в течение всего срока их службы, что крайне важно, учитывая серьёзную опасность для жизни и здоровья людей в случае их неисправностей и аварий.

Давление проведения гидравлических испытаний называется поверочным, и оно превышает рабочее обычно в 1,25, 1,5 или в 5/3 раза. После производства и при периодической проверке сосудов внутреннего давления с целью надёжности их нагружают поверочным давлением с определением степени изменения объёмных характеристик ОРБ.

Содержание

Ход процедуры [ править | править код ]

Рабочее давление испытательное давление

В испытуемом оборудовании, трубопроводе или системе (контуре) создаётся пробное давление (во избежание гидроударов и внезапных аварийных ситуаций это производится медленно и плавно), превышающее рабочее на определяемую по специальным формулам величину, чаще всего на 25 %. При этом тщательно контролируют рост давления по двум независимым поверенным манометрам или каналам измерений, на этом этапе допускается колебание давления вследствие изменения температуры жидкости. В процессе набора давления в обязательном порядке должны быть приняты меры для исключения скопления газовых пузырей в полостях, заполненных жидкостью. Затем, в течение так называемого времени выдержки, оборудование находится под повышенным давлением, которое не должно падать вследствие неплотности испытуемого оборудования, что также внимательно отслеживается. После чего давление снижается до [2] обоснованного расчетом на прочность значения, но не менее рабочего давления. На протяжении этих этапов персонал должен находиться в безопасном месте, нахождение рядом с испытуемым оборудованием строжайше запрещено. После снижения давления персонал проводит визуальный осмотр оборудования и трубопроводов в доступных местах в течение времени, необходимого для осмотра. В комбинированных сосудах с двумя и более рабочими полостями, рассчитанными на разные давления (например в теплообменниках), гидравлическому испытанию должна подвергаться каждая полость.

Оценка результатов [ править | править код ]

Оборудование и трубопроводы считаются выдержавшими гидравлические испытания, если в процессе испытаний и при осмотре не обнаружено течей жидкости и разрывов металла, в процессе выдержки падение давления не выходило за пределы, объясняемые колебаниями давления вследствие изменения температуры жидкости, а после испытаний не выявлено видимых остаточных деформаций.

Пневматическое испытание [ править | править код ]

В случаях, специально оговорённых в проектной документации на испытуемое изделие или государственными правилами и стандартами, допускается замена гидравлических испытаний пневматическими. Чаще всего это разрешается при условии дополнительного обследования предприятием-изготовителем изделия другими методами неразрушающего контроля, например сплошным ультразвуковым и радиографическим контролем основного металла и сварных соединений. В некоторых случаях пневматические испытания являются своеобразным подготовительным этапом перед гидравлическими. Они проводятся аналогично гидравлическим, иногда, при небольших давлениях и применительно к оборудованию со специфической конструкцией (например теплообменникам), места, где могут быть неплотности, обрабатываются мыльным раствором. После повышения давления на местах, имеющих дефекты, вздуваются мыльные пузыри, что позволяет легко их обнаружить. Таким способом определяется плотность, но не прочность оборудования.

Определение параметров гидравлических (пневматических) испытаний [ править | править код ]

Определение давления [ править | править код ]

Существует, как минимум, восемь подходов к выбору величины испытательного давления [3] , везде рассматриваются повреждения коррозионной природы, а также используется связь давления с диаметром трубопровода. Принимается во внимание, что на выбор величины должны влиять как марка стали, так и геометрические характеристики трубопровода и прочностные характеристики сварной конструкции. Связь в виде прямо- и обратно пропорциональных зависимостей не соответствует современным представлениям о механизме разрушения металлического трубопровода. Положение, согласно которому разрушение стенки трубы при гидравлическом испытании происходит, когда напряжение в стенке достигает временного сопротивления разрыву, является чрезвычайно упрощенным. Имеется методика определения максимального давления опрессовки с учетом толщины стенки в рассматриваемый момент, скорости коррозии, величины диаметра и марки стали трубопровода. Имеется запатентованная методика, ее недостатками является сложность и отсутствие программной реализации. Кроме того, нет даже потенциальной возможности интеграции с современными программными расчетными комплексами.

Давление гидравлических испытаний должно быть не менее определяемого по формуле:

P h = K h P [ σ ] T h [ σ ] T <displaystyle P_=K_P<frac <left[sigma
ight]^
>><left[sigma
ight]^>>> Рабочее давление испытательное давление(нижняя граница)

и не более давления, при котором в испытуемом изделии возникнут общие мембранные напряжения, равные 1 , 35 [ σ ] T h <displaystyle 1,35left[sigma
ight]^>> Рабочее давление испытательное давление, а сумма общих или местных мембранных и общих изгибных напряжений достигнет 1 , 7 [ σ ] T h <displaystyle 1,7left[sigma
ight]^
>> Рабочее давление испытательное давление(верхняя граница). Где:

[ σ ] T h <displaystyle left[sigma
ight]^>> Рабочее давление испытательное давление— номинальное допустимое напряжение при температуре гидравлических испытаний T h <displaystyle T_> Рабочее давление испытательное давлениедля рассматриваемого элемента конструкции,

K h <displaystyle K_> Рабочее давление испытательное давление— коэффициент, равный:

  • 1 для защитных оболочек и страховочных корпусов (кожухов);
  • 1,25 для оборудования и трубопроводов (1,15 при пневмоиспытаниях);
  • 1,5 для деталей, изготовленных из литья;
  • 1,3 для сосудов и деталей, изготовленных из неметаллических материалов с ударной вязкостью более 20 Дж/см²;
  • 1,6 для сосудов и деталей, изготовленных из неметаллических материалов с ударной вязкостью менее 20 Дж/см².

Для элементов, нагружаемых наружным давлением, должно также выполняться условие:

P h ≤ 1 , 25 [ P ] <displaystyle P_leq 1,25left[P
ight]> Рабочее давление испытательное давление

Гидравлическое испытание криогенных сосудов при наличии вакуума в изоляционном пространстве должно проводиться пробным давлением, определяемым по формуле:

P h = 1 , 25 P − 0 , 1 M P a <displaystyle P_=1,25P-0,1mathrm mathrm

mathrm > Рабочее давление испытательное давление

Читайте так же:  Толщина утеплителя в каркасной бане

Гидравлическое испытание металлопластиковых сосудов должно проводиться пробным давлением, определяемым по формуле:

P h = [ K h K m + α ( 1 − K m ) ] P [ σ ] T h [ σ ] T <displaystyle P_=left[K_K_+alpha (1-K_)
ight]P<frac <left[sigma
ight]^
>><left[sigma
ight]^>>> Рабочее давление испытательное давление

K m <displaystyle K_> Рабочее давление испытательное давление— отношение массы металлоконструкции к общей массе сосуда;

  • 1,3 для сосудов и деталей, изготовленных из неметаллических материалов с ударной вязкостью более 20 Дж/см²;
  • 1,6 для сосудов и деталей, изготовленных из неметаллических материалов с ударной вязкостью менее 20 Дж/см².

Значения [ σ ] T h <displaystyle left[sigma
ight]^>> Рабочее давление испытательное давление, [ σ ] T <displaystyle left[sigma
ight]^> Рабочее давление испытательное давление, общие и местные мембранные и общие изгибные напряжения; [ P ] <displaystyle left[P
ight]> Рабочее давление испытательное давление— допускаемое наружное давление при температуре гидравлических испытаний определяют по Нормам расчёта на прочность.

В случае, если гидравлическим (пневматическим) испытаниям подвергаются система или контур, состоящие из оборудования и трубопроводов, работающих при разных рабочих давлениях и (или) расчётных температурах, или изготовленных из материалов с различными [ σ ] T h <displaystyle left[sigma
ight]^>> Рабочее давление испытательное давлениеи (или) [ σ ] T <displaystyle left[sigma
ight]^> Рабочее давление испытательное давление, то давление гидравлических (пневматических) испытаний этой системы (контура) следует принимать равным минимальному значению верхней границы давлений испытаний, выбранному из всех соответствующих значений для оборудования и трубопроводов, составляющих систему (контур).

Кем и в каких документах указывается.

Значения давления гидравлических испытаний для оборудования и сборочных единиц (блоков) трубопроводов должны указываться предприятием-изготовителем в паспорте оборудования и свидетельстве об изготовлении деталей и сборочных единиц трубопровода.

Значения давлений гидравлических (пневматических) испытаний систем (контуров) должны определяться проектной организацией и сообщаться предприятию-владельцу оборудования и трубопроводов, которое уточняет эти значения на основе данных, содержащихся в паспортах оборудования и трубопроводов, комплектующих систему (контур).

Определение температуры [ править | править код ]

В большинстве случаев для гидравлического испытания должна применяться вода температурой не ниже 5 °С и не выше 40 °C, если в технических условиях не указано конкретное значение температуры, допускаемой по условию предотвращения хрупкого разрушения и определяемое согласно Нормам расчёта на прочность. При этом во всех случаях температура испытательной и окружающей среды не должна быть ниже 5 °C.

Однако в некоторых отраслях промышленности к выбору допускаемой температуры подходят более строго, что связано с изменением физических свойств материалов и воды при очень высоких давлениях и воздействии других факторов. Например, на АЭС допускаемая температура металла при гидравлических (пневматических) испытаниях в процессе эксплуатации (в том числе после ремонта) устанавливается на основе данных расчёта на прочность, паспортов оборудования и трубопроводов, чисел циклов нагружения, зафиксированных в процессе эксплуатации, фактических флюенсов нейтронов с энергией E ≥ 0 , 5 <displaystyle Egeq 0,5> Рабочее давление испытательное давлениеМэВ и данных испытаний образцов-свидетелей, устанавливаемых в корпуса ядерных реакторов.

Кем и в каких документах указывается.

Допускаемая температура металла при гидравлических испытаниях, проводимых после изготовления, должна определяться конструкторской (проектной) организацией и указываться в чертежах, паспортах оборудования и свидетельствах об изготовлении деталей и сборочных единиц трубопроводов.

Определение времени выдержки [ править | править код ]

Время выдержки под пробным давлением устанавливается разработчиком проекта, но должно быть не менее 5 мин. При отсутствии указаний в проекте время выдержки должно быть не менее значений, указанных в табл.

Авторы:
А.В. Балутов, Е.П. Денисенко, Д.А. Легостаев (ЗАО «НПО «Ленкор»),
А.Е. Шувалов (ООО «Балтморпроект»), А.Ф. Васецкий (НТЦ «ЭДО»).

Опубликовано в журнале Химическая техника №11/2015

Эксплуатация любого опасного производственного объекта (ОПО) не обходится без использования сосудов и аппаратов, работающих под давлением. Наряду со свойствами продуктов, обращающихся в технологическом цикле, на продолжительность эксплуатации оборудования значительное влияние оказывают и параметры, при которых осуществляется их работа. В рамках данной статьи оставим в стороне рассмотрение различных толкований, связанных с понятием «температура», а остановимся на уяснении такой характеристики, как «давления».

Анализируя содержание определений, приведенных в нормативных документах и технической литературе, можно выстроить некую структурную цепочку, сложенную из различных взаимосвязанных понятий. Так, первое определение понятия «технологическое давление» может быть найдено в РД 51-0220570-2–93 [1]. Технологическое давление рт – избыточное давление в сосуде, при котором осуществляется технологический процесс. Это давление принимается по верхнему значению заданного диапазона давлений проведения технологического процесса. Технологическое давление не должно превышать рабочее давление. Оно, как правило, ниже уровня, на который настроены предохранительные клапаны, с целью предотвращения частого их срабатывания.

Следующим в этой цепочке располагается «рабочее давление», определения которого приводятся уже в большем числе нормативных документов таких, как ГОСТ 356 [2], ГОСТ Р 52857.1 [3], Инструкция по выбору сосудов и аппаратов, работающих под давлением до 100 кг/см2 и защите их от превышения давления [4]. Остановимся на ныне используемом определении, приведенном в Техническом регламенте Таможенного союза ТР ТС 032/2013 [5], где сказано следующее: рабочее давление – максимальное избыточное давление, возникающее при нормальном протекании рабочего процесса. Иными словами, рабочее давление – это максимальное из ряда значений технологических давлений. Зачастую специалисты пытаются оспорить такой подход к выбору рабочего давления, мотивируя это тем, что в разных частях аппарата возможны разные значения давления (например, вверху колонны давление газовой фазы 5,4 кг/см2, а внизу 5,8 кг/см2, значит, в качестве рабочего давления следует указывать оба этих значения. Но зачем это делать, если ясно, что только максимальное значение должно учитываться при его определении. Другим примером возможного изменения рабочего давления может быть параметр ведения технологического процесса в начале использования нового катализатора и в момент перед его выгрузкой из системы. Ясно, что в начале использования свежего катализатора значение технологического давления будет ниже, чем при эксплуатации отработавшего катализатора. Но в обоих случаях за рабочее давление следует принимать самое большое его значение, которое действительно оказывает влияние на ведение безопасного технологического процесса. А все остальные, более низкие его значения, не оказывают влияния на безопасность системы.

Следующим по важности и значимости в цепочке понятий располагается «расчетное давление». Его мы также приведем из действующего Технического регламента ТР ТС 032/2013 [5]: давление расчетное – давление, на которое производится расчет на прочность стандартных сосудов (узлов, деталей, арматуры). Некоторые нормативные документы дают дополнительные разъяснения по значению расчетного давления. Так, в ГОСТ Р 52857.1. [3] указано, что расчетное давление может быть выше рабочего в следующих случаях: если во время действия предохранительных устройств давление в аппарате может повыситься более чем на 10% рабочего, то расчетное давление должно быть равно 90% давления в аппарате при полном открытии предохранительного устройства; если на элемент действует гидростатическое давление от столба жидкости в аппарате, значение которого свыше 5% расчетного, то расчетное давление для этого элемента соответственно повышается на значение гидростатического давления.

Читайте так же:  Как покрасить пенопласт в золотой

Дополнительно следует обратить внимание на момент назначения расчетного давления аппарата при проектировании технологической схемы производства. Согласно требованиям Инструкции [4], расчетное давление должно быть назначено несколько выше рабочего давления, что в дальнейшем приведет к следующему:

  • созданию дополнительной возможности продления срока эксплуатации аппаратов, отработавших расчетный ресурс;
  • снижению количества срабатываний предохранительных клапанов;
  • снижению количества продуктов выброшенных «на факел».

Вместе с тем без учета требований Инструкции [4] расчетное давление может быть назначено равным рабочему.

Отдельно в ряду определений стоит «пробное давление», так как оно определяет условия экстремальных испытаний аппарата при параметрах, превышающих и рабочие, и расчетные значения. Неслучайно в приказе №116 от 25.03.2014 г. ФСЭТАН [6] специально оговариваются условия выбора пробного давления. Положения этого приказа являются важнейшим условием испытания аппаратов как при изготовлении, так и при техническом освидетельствовании и экспертизе промышленной безопасности. В этом документе сказано, что «пробное давление рпр при гидравлическом испытании металлических сосудов (за исключением литых) определяется по формуле рпр = 1,25р([σ]20/[σ]), где р – расчетное давление в случае доизготовления на месте эксплуатации, в остальных случаях – рабочее давление, МПа; [σ]20, [σ] – допустимые напряжения для материала сосуда (или его элементов) соответственно при 20°С и расчетной температуре, МПа.

Наконец, выбирая из ряда существующих понятий, нельзя не остановиться на понятии «разрешенное давление». Это понятие претерпело некоторую модификацию за время своего существования и в настоящее время используется в виде определения, приведенного в том же Техническом регламенте Таможенного союза ТР ТС 032/2013 [5]. Давление разрешенное – максимальное избыточное допустимое давление для оборудования (элемента), установленное на основании оценки соответствия и (или) контрольного расчета на прочность.

Собственно за время своего существования оно изменилось незначительно, и первая формулировка, выявленная в нормативных документах 1993 г. отличается от действующей тем, что в РД 51-0220570-2–93 [1] указывалось, что для вновь проектируемых сосудов разрешенное давление принимается равным рабочему. Далее мы постараемся уделить этому понятию более пристальное внимание, так как разрешенное давление оказывает активное влияние на жизненный цикл оборудования.

Исходя из приведенных выше определений схема взаимной увязки различных определений давления (по возрастанию значения) выглядит следующим образом:

Технологическое давление → Рабочее давление (максимальное значение технологического давления) → Расчетное давление по ГОСТ Р 52857.1[3] → Разрешенное давление (в общем случае больше или равно рабочему давлению) → Пробное давление (в процессе эксплуатации составляет 1,25 рабочего давления).

Приступая к конструированию аппарата, специалист конструкторского бюро среди нескольких значений технологического давления, установленных технологом процесса, выбирает наибольшее значение, которое в дальнейшем называется рабочим. Исходя из значений рабочего давления и температуры с учетом характеристик рабочей среды (ее взрывопожароопасности, химической опасности и коррозионной активности), а также требований [4] назначается расчетное давление. Расчетное давление используется при определении толщины стенки аппарата и расчетного срока службы аппарата. Расчетный срок службы ложится в дальнейшем в основу определения назначенного срока эксплуатации. Таким образом, с использованием рабочего и расчетного давлений осуществляется расчет на прочность аппарата и определяется толщина стенки аппарата для его изготовления, а также устанавливается назначенный срок эксплуатации аппарата. Именно эти характеристики аппарата заносятся в паспорт технического устройства и соответствуют условиям безопасной эксплуатации аппарата в назначенный срок эксплуатации.

Готовый аппарат предприятием-изготовителем вместе с паспортом технического устройства передается владельцу ОПО, который осуществляет его монтаж на площадке строительства по рабочей документации, выполненной проектной организацией.

В процессе эксплуатации аппарата под воздействием коррозионно-активных сред и изменяющихся рабочих параметров технологического процесса происходит утонение стенок аппарата, при определенных условиях не исключена также вероятность изменения структуры металла корпуса аппарата.

Все эти процессы приводят к снижению показателя безопасности использования аппарата и требуют проведения технического освидетельствования и экспертизы промышленной безопасности, подтверждающих либо возможность дальнейшей эксплуатации аппарата при рабочем давлении, либо требующих снижения давления с целью сохранения показателей надежности аппарата в период, когда уже истек назначенный срок эксплуатации, установленный при его изготовлении.

И здесь встает вопрос о назначении по результатам экспертизы разрешенного давления и назначенного срока эксплуатации, позволяющего продлить срок эксплуатации по сравнению с назначенным при изготовлении сроком эксплуатации.

Выполнение освидетельствования, диагностирования и экспертизы промышленной безопасности сопровождается проведением гидравлических испытаний, выполнением поверочного расчета на прочность и комплексным освидетельствованием аппарата, включая замер толщины стенки сосуда. По нашему мнению, в качестве исходных данных для проведения поверочного расчета следует принимать рабочее давление в аппарате (т.е. максимальное из рабочих давлений в технологическом процессе). Это подтверждается и требованиями приказа №116 [6] и основными допущениями при расчете на прочность, изложенными в работе [7]. Почему необходимо заострить внимание именно на этом моменте? При выполнении поверочного расчета нельзя ограничиваться использованием только расчетного давления. Ведь это давление потому и называлось расчетным, что оно использовалось в момент подготовки к изготовлению аппарата, и на его основе был назначен срок безопасной эксплуатации аппарата. Мы не исключаем ситуацию, когда при выполнении поверочного расчета в качестве разрешенного давления может приниматься расчетное, и эта формула будет действующей до тех пор, пока результат расчета получается положительным. Но если аппарат уже отработал какой-то срок, и стенки аппарата стали тоньше, а металл, из которого аппарат изготовлен, стал иметь другую структуру, и запаса прочности не хватает для выполнения поверочного расчета на расчетное давление, то почему же проверку следует производить, основываясь именно на этом значении? Наши оппоненты пытаются сгладить ситуацию, ссылаясь на постоянное противоречие между технологами и механиками владельца ОПО.

Читайте так же:  Котел протерм не греет горячую воду

В условиях эксплуатации ОПО механику важно обеспечить надежность и по этой причине ему выгодно иметь разрешенное давление на уровне рабочего давления.

Технологу же приходится думать о возможном увеличении границ рабочего давления, и поэтому он стремится застолбить расчетное давление в качестве максимального рабочего. При этом появляются ссылки на то, что давление в другом аппарате технологической цепочки может оказаться выше, чем рабочее давление в данном сосуде или что установочное давление предохранительного клапана принято по расчетному давлению системы.

Но все это отговорки и попытки в очередной раз запутать пользователей. Нам представляется, что при определении соотношений значений давлений должна выполняться следующая взаимозависимость: рраб ≤ рразр – Максимальное технологическое давление в технологическом процессе рразр ≤ ррасч – Давление, на которое выполнен расчет на прочность аппарата рраб ≤ рразр ≤ ррасч – Максимально избыточное допустимое внутреннее или наружное давление, установленное по результатам технического освидетельствования

Владельцы ОПО, которые действуют от расчетного давления, не учитывают один существенный момент: аппараты выбирались под конкретный базовый проект, в котором заложены рабочие параметры ведения технологического процесса. И, если у владельца возникает желание увеличить параметр по сравнению с ранее назначенным, то начинать эту процедуру следует с внесения изменений в проектную документацию; получения заключения Главгосэкспертизы и реализации технических решений путем выполнения необходимых строительно-монтажных работ. Самостоятельное изменение параметров процесса недопустимо и может привести к катастрофическим последствиям. Именно об этом сказано в действующем Градостроительном кодексе (Федеральный закон №191 от 29.12.2004 г.) [8]

Поводя итог, следует сказать, что при выполнении освидетельствования, технического диагностирования, предшествующего экспертизе промышленной безопасности сначала целесообразно на технологической установке выделить участки с одинаковыми значениями рабочего давления. Эти участки могут ограничиваться секционирующей арматурой, выделяющей технологические блоки, или ручной арматурой, выделяющей отдельный аппарат, защищенный предохранительным клапаном.

В дальнейшем для данной группы аппаратов все оценки следует производить, основываясь на значениях единого рабочего давления, включая проведение поверочного расчета и выполнение гидравлических испытаний. Если возникнет необходимость снизить разрешенное давление ниже ранее установленного для конкретного аппарата, то такое снижение следует производить для всей группы выделенных аппаратов, защищаемых единым предохранительным клапаном. Такая операция сопровождается перерасчетом установочных давлений и пропускной способности предохранительных клапанов из-за снижения разрешенного давления, при котором эксплуатация аппарата безопасна.

По результатам освидетельствования и технического диагностирования в заключении экспертизы промышленной безопасности устанавливается разрешенное давление дальнейшей эксплуатации сосуда, которое, как правило, равняется рабочему давлению в аппарате и безусловно ниже расчетного давления, принятого на стадии проектирования аппарата. Эти данные экспертом промышленной безопасности заносятся в паспорт сосуда и используются в качестве максимальных в течение всего срока, на который продлен период эксплуатации аппарата. Задача же специалистов владельца ОПО будет состоять в том, чтобы произвести перерасчет установочных давлений предохранительных клапанов таким образом, чтобы они согласовывались с новыми разрешенными давлениями.

Рабочее давление испытательное давлениеНа рисунке представлен пример развития событий при освидетельствовании и экспертизе промышленной безопасности сосудов технологической установки нефтеперерабатывающего завода в зависимости от результатов поверочных расчетов на прочность.

И повышенное, и пониженное давление в отопительной системе могут стать причинами нарушения нормального процесса теплоснабжения. Если давление в системе пониженное, то в зоне всаса насоса может возникнуть вскипание теплоносителя (кавитация), что часто становится причиной выхода из строя насосного оборудования. Повышенное давление может разрушить элементы отопительных систем.

Виды давления в отопительной системе

Давлением в системе теплоснабжения называется воздействие жидкостей и газов на стенки трубопровода, отопительных приборов и агрегатов с силой, которая соизмеряется с величиной атмосферного давления. Измеряется данная величина в атм, Па, бар. (См. также: Схемы водяного отопления)

Рабочее давление в системе отопления – это давление при нормальных режимах функционирования отопительной системы и включенном насосе. Данная величина является суммарной и состоит из двух компонентов: статического давления жидкостного столба и динамического давления, создаваемого с помощью циркуляционных насосов.

Выделяют допустимое рабочее давление, которое является максимальной величиной, обеспечивающей нормальную работу теплогенератора, приборов и циркуляционных насосов. Наиболее высокое рабочее давление могут выдерживать радиаторы, изготовленные из биметаллических материалов. Это либо сочетание алюминия и стали, либо алюминия и меди. Меньшую величину давления могут выдерживать чугунные, стальные и алюминиевые отопительные приборы.

Испытательное давление создается с помощью специальных насосов и является избыточным. Цель его создания – обнаружение протечек и скрытых дефектов трубопроводов и отопительных приборов. Перед включением в режим работы отопительные системы проходят испытания под давлением, которое превосходит рабочее в 1,5 раза. (См. также: Алюминиевые радиаторы отопления)

Такие испытания особо актуальны в условиях отечественного теплоснабжения, где давление теплоносителя имеет довольно высокие значения. Поэтому приборы, рассчитанные на эксплуатацию при давлениях, значения которых значительно ниже существующих в нашем теплоснабжении, то через короткий период времени они выйдут из строя. В высотных домах избыточное давление может достигать 16 атмосфер.

Гидравлическими ударами называют скачкообразные повышения давления в отопительной системе, многократно превышающие величину рабочего давления. Такие экстремальные явления могут привести к разрушению трубопровода, отопительных приборов, других элементов теплоснабжения. Причиной гидравлических ударов чаще всего бывают технологические ошибки, допущенные персоналом. Лучше всего резкие перепады давления переносят биметаллические отопительные приборы, а наиболее уязвимыми являются алюминиевые и стальные радиаторы.

Испытания системы давлением

Испытывать систему давлением можно либо полностью, либо отдельными участками. После завершения всех работ система испытывается на герметичность как единое целое. (См. также: Общие правила и стоимость опрессовки системы отопления)

В качестве испытательного, принимается давление, которое в 1,5 раза выше рабочего. Из испытуемой системы должен быть полностью выпущен воздух, который приведет к искажению результатов проверки.

Испытания систем для проверки герметичности проводятся двумя этапами. На первом этапе испытание проводят при низких температурах теплоносителя, а на втором – при высоких. Второй этап испытаний проводится после подключения отопительного котла.

Проверка считается успешной, если после ее окончания не было обнаружено ни единой протечки.

Оцените статью
Adblock
detector