Основными типами устройств звукоизоляции являются

Широкое применение получили акустические средства защиты от шума на пути его распространения:

Использование звукопоглощения для снижения шума в помещении именуется акустической обработкой помещения. С этой целью применяют:

* облицовку части внутренних поверхностей помещения звукопоглощающими материалами (рис. 7, а);

* размещение в помещении штучных звукопоглотителей различных конструкций, подвешиваемых на потолочные перекрытия (рис. 7, б).

Основными типами устройств звукоизоляции являются

Рис. 7. Акустическая обработка помещений:

а — звукопоглощающая облицовка помещений:

1 — защитный перфорированный слой; 2 — звукопоглощающий материал;

3 — защитная стеклоткань; 4 — стена или потолок; 5 — воздушный промежуток;

6 — плита из звукопо-глощающего материала;

Основными типами устройств звукоизоляции являются

Рис. б — звукопоглотители различных конструкций

Поглощение звука происходит путем перехода энергии колеблющихся частиц воздуха в теплоту за счет потерь на трение в пористом материале облицовки или звукопоглотителя. Для звукопоглощающей облицовки помещения используются стекловата, минеральная и капроновая вата, мягкие пористые волокнистые материалы, акустические плиты с зернистой или волокнистой структурой типа «Акмигран», «Акминит», «Силакпор» и др. Для большей эффективности звукопоглощения пористый материал должен иметь открытые со стороны падения звука незамкнутые поры. Звукопоглощающие материалы характеризуются коэффициентом звукопоглощения ? , равным отношению звуковой энергии Епогл., поглощенной материалом, к энергии Епад., падающей на него .

Звукопоглощающие материалы должны иметь коэффициент звукопоглощения ? не менее 0,2. Звукопоглощающие свойства облицовки определяются толщиной слоя пористого материала, частотой звука, наличием воздушной прослойки между материалом облицовки и поверхностью помещения. Наибольший эффект обеспечивается в низких помещениях (до 4…6 м) при высоких частотах шума.

Штучные поглотители используется в помещениях, где затруднена установка облицовки. Поглотители различных конструкций, представляющие собой объемные тела, изготовленные в виде конуса, куба, параллелепипеда, заполненные звукопоглощающим материалом (тонкими волокнами), подвешивают к потолку равномерно по площади помещения.

Поскольку эффективность акустической обработки помещений невелика, при необходимости ее следует сочетать с другими мерами по защите от шума.

К средствам звукоизоляции относятся: звукоизолирующие ограждения, кожуха, кабины, а также акустические экраны.

К звукоизолирующим ограждениям относятся: стены, перекрытия, перегородки, остекленные проемы, окна, двери. Они позволяют изолировать источник шума от помещения или само помещение от шума, проникающего извне. Звукоизоляция достигается созданием герметичной преграды на пути распространения воздушного шума. Физическая сущность звукоизолирующих преград состоит в том, что падающая на ограждение энергия звуковой волны отражается в значительно большей степени, чем проходит через него. Основная количественная характеристика эффективности звукоизолирующих свойств ограждений — коэффициент звукопроницаемости ?.

В зависимости от принципа действия среди акустических средств защиты можно выделить средства звукоизоляции (звукоизолирующие ограждения, кожухи, кабины, акустические экраны, выгородки), средства звукопоглощения (звукопоглощающие облицовки, объемные поглотители звука), глушители шума.

Между эффектами звукоизоляции и поглощения звука имеется принципиальное различие. Звукоизолирующие свойства конструкций обусловлены способностью отражать звук и характеризуется коэффициентом звукопроницаемости ?, представляющего собой отношение звуковой мощности, прошедшей через ограждение, к падающей ? = Рпр / Рпад . Звукоизолирующие преграды в виде стен, перегородок, кожухов, кабин, выгородок служат для того, чтобы не пропускать звук из шумного помещения в более тихое.

Поглощение звука обусловлено переходом колебательной энергии в теплоту из-за потерь на трение в порах материала. Поэтому для эффективного звукопоглощения необходимо использование пористых структур, для звукоизолирующих же конструкций требуются плотные, твердые и массивные материалы. Способность материалов поглощать звук оценивается коэффициентом звукопоглощения а, который представляет собой отношение звуковой мощности, поглощенной материалом, к мощности, падающей на него а =Рпогл./Рпад. (кирпич, бетон имеют а = 0.01 — 0.05, у звукопоглощающих а > 0.2). Звукопоглощающие материалы ( ультра-тонкое и капроновое волокна , минеральная вата, древесноволокнистые и минераловатные плиты с профилированной поверхностью, пористый поливинилхлорид и др.) и конструкций (звукопоглощающие облицовки, объемные поглотители) предназначены для поглощения звука как в помещениях с источником, так и в соседних.

Установка звукопоглощающих облицовок снижает шум на 6. 8 дБ в зоне отраженного звука ( вдали от источника ) и на 2. 3 дБ вблизи источника шума. Однако их применение целесообразно ,так как из-за изменения спектрального состава за счет большей эффективности облицовок на высоких частотах (8. 10 дБ), шум становится более глухим и менее раздражающим. Звукоизолирующие конструкции ослабляют шум в соседних помещениях на 30. 50 дБ.

Источники шума по физической природе шума подразделяют на источники механического, аэродинамического, гидродинамического и электромагнитного шума. В зависимости от характеристик источника шума выбираются средства коллективной защиты (СКЗ) и индивидуальной защиты (СИЗ). Виды коллективных средств защиты представлены на рис. 21.

Выбор СКЗ производится на основе акустического расчета. Цель расчета – определить фактический уровень шума Lф и потребное снижение уровня шума ΔL до допустимой величины Lн, т.е ΔL= Lф- Lн.

Основными типами устройств звукоизоляции являются

Рис. 21. Виды средств коллективной защиты от шума

В зависимости от места расположения источника проводится акустический расчет: при размещении источника на открытом пространстве (1) или в помещении (2).

Интенсивность шума на открытом пространстве определяется зависимостью:

где: W – звуковая мощность источника,

S – площадь поверхности, на которую распределяется звуковая энергия, К – коэффициент ослабления шума на пути распространения,

Ф – фактор направленности.

Путем деления левой и правой части приведенной формулы на Io и последующего логарифмирования получена формула для расчета уровня звукового давления:

L = LW + 10 lgФ — 10 lg S/So — Δ LW,

где: LW – уровень звуковой мощности источника;

Ф – фактор направленности источника;

S, So – соответственно площади поверхностей, на которые распределяется звуковая энергия S = 2πr 2 и So = 1м 2 , а r – расстояние от источника до контрольной точки;

Δ LW ==10 lgK — снижение уровня шума на пути распространения.

При распространении звука в ограниченном звуковом поле, например в жилой застройке или внутри помещений, в формулу для определения L вводятся поправки, учитывающие отражение и поглощение звуковых волн ограждающими поверхностями.

Интенсивность шума в помещении определяется зависимостью:

I = Iпp + Ioтр = РФ/S + 4Р/В,

где: Iпp, Ioтp – интенсивность прямого звука от источника и интенсивность отраженного от стен звука.

В = А/(1 — Основными типами устройств звукоизоляции являютсяср) – постоянная помещения,

А = Основными типами устройств звукоизоляции являютсяср Sпов – эквивалентная площадь звукопоглощения, а Основными типами устройств звукоизоляции являютсяср – средний коэффициент звукопоглощения поверхностей ограждений помещения площадью Sпов.

Путем аналогичных преобразований, приведенных выше, получается зависимость для определения уровня звукового давления источника:

L=LW+10 1g(Ф/S+ Основными типами устройств звукоизоляции являются).

Из закономерностей распространения шума и акустического расчета следуют меры защиты от шума: (1) уменьшение звуковой мощности источника; (2) звукопоглощение; (3) звукоизоляция; (4) рациональное размещение источника шума.

1. Уменьшение звуковой мощности источника.

Мероприятия уменьшения шума источника зависят от природы шума.

Механические шумы снижаются за счет уменьшения перехода механической энергии в акустическую путем:

— повышения точности изготовления машин;

— уменьшения передаваемых нагрузок и частоты вращающихся частей;

— замены ударных процессов на безударные;

— улучшение балансировки вращающихся частей;

— замена в механизмах возвратно-поступательного движения на вращательное;

— использование незвучных материалов (пластмассы, незвучные металлы с большим внутренним трением);

— совершенствование смазки трущихся поверхностей;

— применение клиноременных и зубчато-ременных передач вместо зубчатых.

Аэродинамические шумы от перехода энергии газовой струи в аэродинамическую энергию. Снижение аэродинамических шумов достигается:

— уменьшением скорости обтекания тел;

— совершенствованием аэродинамических характеристик тел;

— улучшением аэродинамических характеристик машин (вентиляторов, турбин );

— трансформацией спектра шума в высокочастотную, ультразвуковую область;

— снижением градиента скорости струи за счет совершенствования конструкции.

Гидродинамические шумы при переходе энергии жидкости в акустическую снижаются за счет:

— улучшения гидродинамических характеристик насосов;

— уменьшения турбулентности потока жидкости;

— использования оптимальных режимов работы насосов;

— исключения гидравлических ударов рациональной конструкцией гидросистемы;

— недопущения резких закрытий трубопроводов.

Электромагнитные шумы при переходе энергии электромагнитного поля в акустическую. Методами защиты служат:

— использование в конструкции электрических машин скошенных пазов якоря двигателя;

— применение плотной прессовки пакетов в трансформаторах;

— учет влияния на ферромагнитные массы переменных магнитных полей.

2. Звукопоглощение основано на переходе энергии колеблющихся частиц воздуха в теплоту за счет потерь на трение в порах материала. Характеристикой звукопоглощающих свойств материала служит коэффициент звукопоглощения α.

где: Wпoгл, Wпад – звуковая энергия, соответственно поглощенная и падающая на поверхность материала. Звукопоглощающими материалами считаются материалы с коэффициентом звукопоглощения более 0,2. У материалов с развитой пористой структурой (незамкнутые поры) величина коэффициента достигает α = 0,6÷0,9. К таким материалам относятся минеральная вата, стекловолокно, древесноволокнистые плиты и т.п.

Использование звукопоглощения для снижения шума в помещении именуется акустической обработкой помещения.

Акустическая обработка осуществляется различными методами:

— облицовка внутренних поверхностей помещений звукопоглощающими материалами;

— подвеска на потолочные перекрытия звукопоглотителей, выполненных из звукопоглощающего материала.

При выборе звукопоглощающего материала учитывается частота шума, а также условия эксплуатации облицовки (запыленность, влажность и др.). Снижение уровня шума методом звукопоглощения определяется зависимостью

ΔLoбл = 10 1g Основными типами устройств звукоизоляции являются,

где: В1 и В2 – постоянные помещения до и после акустической обработки, а В1,2 – А1,2(1-α1,2), А1,2 – эквивалентные площади звукопоглощения до и после обработки помещения, α1,2 — средние коэффициенты звукопоглощения до и после обработки. Величина А= 0,16 Основными типами устройств звукоизоляции являются, где V – объем помещения в м 3 , Т – время реверберации, т.е. время, в течение которого уровень звукового давления уменьшается на 60 дБ после прекращения действия источника шума.

Наибольший эффект метода звукопоглощения обеспечивается в низких помещениях (до 6÷4 м) при высоких частотах шума. Одиночные объемные звукопоглотители используются в помещениях, где затруднена установка облицовки. Звукопоглотители представляют собой геометрические тела различной формы, выполненные из звукопоглощающего материала. Для расчета снижения шума звукопоглотителями используется формула

где: Ашт – эквивалентная площадь звукопоглотителя, a n – количество поглотителей.

3. Звукоизоляция – это снижение шума на пути его распространения за счет звукоизолирующих преград (стен, перегородок, экранов и т.п.). Звуковая энергия отражается от ограждений и только часть ее проходит через ограждение.

Характеристикой звукоизоляции служит коэффициент звукопроницаемости τ, равный отношению звуковой мощности, прошедшей через ограждение (Wпр), к звуковой мощности (Wпад), падающей на ограждение τ = Основными типами устройств звукоизоляции являются. Другой характеристикой звукоизоляции является коэффициент звукоизоляции R = 10 lg Основными типами устройств звукоизоляции являются(дБ).

Для оценки звукоизоляции однородной перегородки используется зависимость R = 201g (m0 f) – 47,5 (дБ), где m0 – масса 1м 2 ограждения (кг), f — частота (Гц).

Звук через ограждения проходит (рис. 22) через отверстия в ограждении, через излучение шума ограждениям под действием на него переменного давления падающего звука, а также от вибрации ограждения, возбуждаемой механическим воздействием на ограждение. В последнем случае звуковые волны распространяются не по воздуху, а по конструкции. Из зависимости для оценки звукоизоляции однородной перегородки следует, что звукоизоляция повышается с ростом массы ограждения и частоты звука. На звукоизоляцию влияют жесткость ограждения, резонансные явления.

Основными типами устройств звукоизоляции являются: звукоизолирующие кожуха, кабины, экраны. Звукоизоляция позволяет ослабить шум в помещении на 30-50 дБ. Нанесение на внутренние поверхности конструкции вибродемпфирующих покрытий увеличивает внутренние потери и повышает эффективность звукоизоляции.

Глушители шума являются устройством снижения аэродинамического шума на пути его распространения. По принципу действия глушители подразделяют на активные (абсорбционные), реактивные и комбинированные (рис. 23).

Основными типами устройств звукоизоляции являются

Рис. 22. Средства звукоизоляции: 1 – звукоизолирующий кожух; 2 – звукоизолирующая кабина; 3 – акустический экран

Основными типами устройств звукоизоляции являются

Рис. 23. Глушители: а) активный; б) камерный; в) резонансный

Активные глушители содержат звукопоглощающий материал в виде набивки или матов, закрепляемых на внутренней поверхности глушителя, в виде звукопоглощающих пластин, устанавливаемых в канале глушителя.

Реактивные глушители отражают шумы обратно к источнику. Они снижают шум в узких частотных пределах и подразделяются на камерные и резонансные. Камерные глушители выполняются в виде расширительных камер, отражающих звуковую волну обратно к источнику. В резонансном глушителе снижение шума достигается за счет потерь звуковой энергии на колебательный процесс в резонаторе, который рассчитывается на определенную длину звуковой волны.

Снижение шума в широком диапазоне частот достигается в комбинированных глушителях, в которых используют набор различных шумопонижающих активных и реактивных устройств.

Не нашли то, что искали? Воспользуйтесь поиском:

С конструктивной точки зрения перегородки можно разделить на два класса: однослойные и многослойные.

Однослойные конструкции подразумевают использование какого-либо плотного строительного материала на жестком связующем (растворе). Это могут быть кирпичные, гипсолитовые, керамзитобетонные и даже железобетонные перегородки, где бетон играет роль и конструктивного материала, и связующего. Несмотря на то, что в одной перегородке возможна комбинация нескольких материалов, определяющим будет наличие только плотных материалов при условии жестких связей между всеми элементами конструкции (например, стена из пемзобетонных блоков на цементно-песчаном растворе, облицованная кирпичом).

Звукоизоляционные характеристики подобных конструкций определяются, прежде всего, их массой и улучшаются примерно на 6 дБ при двукратном увеличении массы стены. Пористость материала перегородки также играет роль в обеспечении ее звукоизоляционных качеств. Однако, как показывает практика, выигрыша за счет повышения пористости материала получить практически не удается из-за более существенных потерь звукоизоляции при соответственно уменьшающейся при этом поверхностной плотности такого материала.

Многослойные перегородки, как следует из названия, состоят из нескольких (минимум двух) чередующихся слоев жестких (плотных) и мягких (легких) строительных материалов. Плотные материалы (гипсокартон, кирпич, металл) проявляют здесь звукоизоляционные свойства и работают аналогично однослойным перегородкам: звукоизоляция тем выше, чем больше поверхностная плотность материала. Материалы легкого слоя выполняют звукопоглощающую функцию, т.е. структура материала должна быть такой, чтобы при прохождении сквозь нее звуковых колебаний последние ослаблялись за счет трения воздуха в порах материала. Следует отметить низкую эффективность применения в звукоизоляционных перегородках таких материалов, как пенопласт, пенополиуретан или пробка. Это связано с тем, что для хороших звукоизоляционных материалов они имеют недостаточную плотность, а для причисления их к классу звукопоглощающих материалов — слишком низкое поглощение из-за отсутствия возможности продувания воздухом.

Звукоизолирующая способность трехслойных вариантов многослойных перегородок (наиболее распространенный пример — каркасно-обшивная гипсокартонная перегородка) зависит от большего числа факторов, чем звукоизоляция однослойной перегородки. Увеличение плотности материала жестких слоев, увеличение расстояния между крайними слоями (т.е. увеличение общей толщины перегородки) и заполнение внутреннего пространства слоями специального звукопоглотителя (именно поглотителя, а не утеплителя) — вот основные пути достижения необходимой звукоизоляции.

Для реализации всего потенциала многослойных конструкций должно выполняться требование послойного прохождения звука через толщу перегородки. Проще говоря, в идеале звуковая волна должна последовательно пройти сначала только через первый жесткий слой, затем только через мягкий, затем только через второй жесткий слой и т.д. На практике же обязательное присутствие несущего каркаса приводит к тому, что звуковые колебания первого жесткого слоя передаются через общий каркас (или общий фундамент) на последний жесткий слой и переизлучаются им в защищаемое помещение. Таким образом, звуковая энергия по жестким элементам каркаса успешно минует специально заготовленные внутренние звукопоглощающие слои-ловушки, в результате чего реальная звукоизоляция многослойных конструкций оказывается значительно ниже расчетных значений.

В процессе рассмотрения звукоизолирующей способности данных типов перегородок неизбежно возникает вопрос: какой тип перегородок имеет лучшую звукоизоляцию при наименьшей толщине, массе и стоимости? Традиционный ответ звучит так: многослойные каркасные перегородки в качестве внутренних ограждающих конструкций предпочтительнее. При значительно меньшей массе (что очень важно для снижения нагрузок на перекрытия и фундамент) и толщине они имеют практически одинаковый (а иногда и больший) индекс изоляции воздушного шума (Rw), чем однослойные конструкции.

Однако, здесь важно понимание сущности индекса изоляции воздушного шума. Rw — это некая усредненная величина, с помощью которой можно быстро и достаточно объективно сравнивать звукоизоляционные характеристики строительных конструкций в отношении изоляции так называемых "бытовых шумов", то есть таких шумов, как звуки голоса, работающего телевизора, дребезга посуды, звонка телефона или будильника.

В отношении музыкальных центров с системами "Mega Bass", домашних кинотеатров, оснащенных мощными сабвуферами, и высококачественных систем прослушивания музыки, выбор конструкции перегородки, основанный только на значении индекса Rw, представляется не вполне корректным. Как, впрочем, и вся система нормирования звукоизоляции строительных конструкций, регламентирующая параметры их изоляции в частотном диапазоне от 100 Гц и выше. А ведь на сегодняшний день практически у любой качественной системы звуковоспроизведения частотный диапазон начинается с 20-40 Гц.

На рис.1 показаны графики звукоизоляции однослойной (неоштукатуренная стена в полкирпича) и многослойной (перегородка из ГКЛ) конструкций. По значениям индексов изоляции воздушного шума Rw гипсокартонная перегородка (Rw = 48 дБ) превосходит кирпичную стенку (Rw = 45 дБ) на 3 дБ. При этом толщины двух конструкций практически равны: толщина кирпичной стены без штукатурки — 120 мм, а толщина гипсокартонной перегородки — 125 мм. Однако, как видно из графиков, на частотах до 200 Гц звукоизоляция кирпичной стены превосходит звукоизоляцию гипсокартонной перегородки. И, в общем, данная закономерность справедлива практически для всех однослойных и многослойных конструкций одинаковой толщины. Вместе с тем уже в области средних частот звукоизоляция многослойных конструкций может существенно превышать изоляцию однослойных перегородок (именно за счет этого и происходит рост индекса Rw).

Сравнение звукоизоляционных характеристик однослойных и многослойных конструкций перегородок
Основными типами устройств звукоизоляции являются

Поэтому при выборе конструкции внутренних перегородок необходимо четко представлять, для изоляции каких типов шумов и от каких источников данные перегородки предназначены.

Звукоизоляционные характеристики перегородок

Несмотря на некоторые недостатки индекса изоляции воздушного шума Rw, он, безусловно, является очень удобным параметром для быстрого сравнения звукоизоляции различных конструкций перегородок между собой и с нормативными величинами звукоизоляции ограждающих конструкций.

На территории Российской Федерации по-прежнему действует СНиП II-12-77 "Защита от шума", а в Москве с 1997 года действуют дополняющие и уточняющие МГСН 2.04 — 97 "Допустимые уровни шума, вибрации и требования к звукоизоляции в жилых и общественных зданиях". Несмотря на то, что в МГСН введено деление зданий по категориям комфортности (А, Б и В), в отношении требований к звукоизоляции стен и перегородок значительных изменений не произошло. Например, требование нормативной изоляции воздушного шума межкомнатными перегородками вне зависимости от класса жилья осталось на уровне Rw = 43 дБ, как и 25 лет назад, а требование к индексу изоляции воздушного шума межквартирной стены ужесточилось всего на 2 дБ, и только по отношению к зданиям категории А (высококомфортные условия). То есть индекс изоляции воздушного шума межквартирной стены в таком здании должен быть не менее Rw = 54 дБ, против Rw = 52 дБ обязательных ранее для жилых зданий всех типов. А ведь шумовой фон в квартирах (не считая мощных источников, типа кинотеатров или Hi-End) за прошедшие десятилетия, по крайней мере, у нас в стране значительно вырос. В настоящее время практически в каждом доме и в каждой комнате имеется телевизор, телефон, магнитола, а в кухне и ванной комнате работают стиральная или посудомоечная машины, вытяжка и кондиционер. Домашний компьютер также вносит свой вклад в увеличение общего шумового фона.

Имеющийся опыт позволяет утверждать, что для современных условий индекс изоляции воздушного шума межкомнатной перегородки должен быть не менее Rw = 52 дБ, а межквартирной стены — не менее Rw = 62 дБ. Только при таких нормативных значениях ограждающих конструкций можно говорить об акустическом комфорте. Однако даже стена с Rw = 62 дБ полностью не решит проблему звукоизоляции спальни, если сосед решил посмотреть в своем кинотеатре новый боевик. Практика показывает, что средний уровень звука при просмотре фильма в домашнем кинотеатре составляет LА = 90 дБА. Таким образом, в помещении спальни уровень шума окажется в районе LА = 30 дБА. И хотя это примерно соответствует предельному значению ночных норм по уровню шума в жилых помещениях (LАпред = 30 дБА), чтобы действительно можно было говорить о чуть слышном или о вообще неслышном звуке уровень шума в комнате должен быть не выше LА = 20 дБА.

Интересно, что шум, проникающий с улицы (прежде всего от автотранспорта), и существенно (более чем на 6 дБА) превышающий шум от соседей, вызывает гораздо меньшее раздражение, чем более слабые звуки: музыка, крики, смех и т.п. Это обусловлено психофизиологическими особенностями человеческого слуха, и в борьбе за акустический комфорт жилища с этим также приходится считаться.

Какие конструкции внутренних перегородок с индексом изоляции воздушного шума не менее 50 дБ можно предложить? Прежде всего, это легкие каркасные перегородки с обшивкой из гипсокартонных (ГКЛ) или гипсоволокнистых (ГВЛ) листов. С точки зрения шумоизоляции применение листов ГВЛ предпочтительнее. Во-первых, они имеют более высокую (почти в полтора раза) поверхностную плотность. Во-вторых — из-за технологии производства данный материал имеет более высокие внутренние потери, т.е. является менее звонким. Однако из-за более сложной технологии финишной отделки подавляющее большинство строителей, к сожалению, отдает предпочтение использованию ГКЛ.

Для получения высокой шумоизоляции необходимо использовать два независимых каркаса, на каждый из которых монтируются внешние слои обшивки. Помимо этого, элементы каркаса, связанные с боковыми стенами и перекрытиями, должны быть изолированы упругими прокладками, чтобы исключить косвенную передачу звука.

Общий шумоизоляционный эффект также зависит и от выбора материала среднего слоя. Главный критерий выбора такого материала — величина его безразмерного коэффициента NRC (NRC — усредненный по частотам коэффициент звукопоглощения), значения которого могут колебаться от 0 до 1. Чем ближе значение NRC к единице, тем выше звукопоглощающая способность материала. Для получения максимального эффекта рекомендуется выбирать материалы с NRC не менее 0,8. Так, например, специальный звукопоглощающий материал — минеральная плита "Шуманет-БМ" имеет значение NRC = 0,9. Толщина поглощающего слоя должна составлять не менее 50% внутреннего пространства перегородки и быть не тоньше 100 мм (естественно, что при толщине каркаса 50-75 мм можно применить только один слой звукопоглотителя толщиной 50 мм).

Индекс изоляции воздушного шума каркасно-обшивной перегородки из двух листов ГВЛ 12 мм на каждом из двух независимых каркасах толщиной по 50 мм с воздушным промежутком между каркасами 10 мм составляет около Rw = 53 дБ. При этом внутреннее пространство заполняется звукопоглощающей ватой толщиной 100 мм и общая толщина конструкции равна 160 мм.

Кирпичные перегородки из полнотелого красного кирпича, оштукатуренные с двух сторон, имеют следующие значения индекса шумоизоляции:

  • стена в полкирпича (толщина со штукатуркой 150 мм) — Rw = 47 дБ;
  • стена в один кирпич (толщина со штукатуркой 280 мм) — Rw = 54 дБ;
  • стена в два кирпича (толщина со штукатуркой 530 мм) — Rw = 60 дБ.

Таким образом, для изоляции "бытовых" шумов более предпочтительным является использование легкой перегородки из ГВЛ толщиной 160 мм, имеющей уровень шумоизоляции, сопоставимый по величине с аналогичным параметром более массивной стены толщиной в один кирпич (280 мм).

Причины снижения шумоизоляционных характеристик перегородок

Наверное, нет ни одной статьи, посвященной проблеме шумоизоляции легких перегородок, где бы ни говорилось о важности установки упругих прокладок в местах примыкания направляющих профилей каркаса к стенам и перекрытиям. Однако на практике крайне редко встречаются строители, которые бы добросовестно выполняли подобные мероприятия. Как правило, необходимость установки таких прокладок осознается уже после монтажа и обработки всех поверхностей, когда изменить что-либо не представляется возможным.

Помимо ухудшения шумоизоляции перегородок, отсутствие упругих прокладок по контуру закрепления приводит к повышенной передаче косвенных шумов из других помещений и этажей. Даже если к шумоизоляции в отношении соседнего помещения претензии отсутствуют, такая перегородка может преподнести неприятный сюрприз, переизлучая шумы, например, от соседей сверху или снизу.

Здесь также уместно упомянуть о передаче косвенных шумов однослойными конструкциями. Безусловным лидером среди перегородок с плохой шумоизоляцией является стена из гипсолитовых блоков со стандартной толщиной 80 мм. Мало того, что ее индекс изоляции воздушного шума не превышает Rw = 40 дБ, что недостаточно даже по действующим нормам (Rwнорм = 43 дБ); но, кроме всего прочего, конструкция, выполненная из этого материала, является отличным проводником и излучателем структурных шумов. В качестве примера можно привести ситуацию, когда в одной из комнат квартиры, со стороны стены, выполненной из гипсолитовых блоков, был слышен звук соседского рояля. Создавалось полное впечатление, что музыкант живет в квартире, расположенной рядом. Каково же было удивление присутствующих, когда выяснилось, что рояль находится у соседей снизу!

Невысоко оцениваются шумоизоляционные свойства семищелевого и многопустотного красного кирпича. Это тот самый случай, когда внутренние пустоты вносят в повышение шумоизоляции гораздо более скромный вклад, чем снижение шумоизоляции за счет уменьшения поверхностной плотности такой стены. Ко всему прочему перегородки из семищелевого кирпича прекрасно проводят и излучают звук. Для уменьшения передачи и излучения структурного шума стеной из этого материала можно рекомендовать засыпку внутренних полостей кирпичей песком.

Необходимость заполнения внутреннего пространства звукопоглотителем при монтаже легких перегородок и облицовок из ГКЛ для некоторой части строителей, к сожалению, не является очевидным фактом. Так как для внутренних перегородок проблема теплоизоляции, как правило, не возникает, очень часто единственным "звукопоглотителем" внутри перегородки оказывается воздух. В этом случае возможно существенное снижение шумоизоляции конструкции (на собственных резонансных частотах), когда перегородка становится подобной барабану. Поэтому заполнение внутреннего пространства звукопоглощающим материалом крайне важно, причем это должен быть материал с как можно более высоким коэффициентом звукопоглощения (желательно не менее NRC = 0,8).

Одной из типичных причин снижения шумоизоляции перегородок всех видов являются банальные щели и отверстия в конструкциях. Наличия небольшой сквозной трещины в углу межквартирной стены вполне достаточно, чтобы не напрягая слух, слышать разговор соседей. Для того чтобы перестать различать слова, необходимо лишь хорошо заделать такую щель раствором.

При этом хотелось бы развеять миф о хороших шумоизоляционных свойствах монтажной пены. Благодаря удобству ее применения возникает искушение "запенить" ненужное отверстие или образовавшуюся щель. Однако шумоизоляционные свойства монтажной пены очень слабые, несмотря на ее пористость (а скорее благодаря последней). Поэтому заделанные таким образом отверстие или щель продолжают вполне успешно излучать звук, пусть и с небольшими потерями. Для устранения щелей и отверстий рекомендуется использовать акриловые или силиконовые герметики, тем более что последние обладают хорошей эластичностью — важной особенностью материала для заделки всякого рода трещин.

Следует иметь в виду, что два слоя обшивочного материала обеспечивают большую герметичность каркасно-обшивной перегородки, чем один слой удвоенной толщины. При этом листы ГВЛ или ГКЛ монтируются так, чтобы швы первого и второго слоев не совпадали (внахлест).

Увеличение шумоизоляции существующих перегородок

В случае недостаточной шумоизоляции каркасно-обшивной перегородки из ГКЛ, прежде всего, необходимо рассмотреть вышеперечисленные "типовые" причины и устранить их. Если это сделать по каким-либо причинам невозможно, единственно верным решением является установка дополнительной каркасной облицовки или применение готовых панелей дополнительной шумоизоляции ЗИПС.

Для того чтобы увеличить шумоизоляцию легкой перегородки на DRw = 10 дБ, необходимо параллельно ей установить дополнительную каркасную перегородку. Гипсоволокнистые листы толщиной 12 мм монтируются в два слоя со стороны защищаемого помещения на каркасе из П-образных металлических профилей шириной 100 мм. Внутреннее пространство заполняется двумя слоями звукопоглощающей ваты Шуманет-БМ толщиной 50 мм каждый. При этом направляющий профиль монтируется только к полу, потолку и боковым стенам через упругую прокладку "Вибросил" с отступом от существующей стены около 10 мм, чтобы избежать соприкосновения с ней элементов каркаса (стоечных профилей). Общая толщина дополнительной шумоизоляционной конструкции составляет около 135 мм.

Те же ΔRw = 10 дБ могут быть получены путем монтажа на защищаемую стену панелей дополнительной шумоизоляции ЗИПС толщиной 50 мм. Панель ЗИПС — это готовая к применению сэндвич-панель (многослойная конструкция), где чередуются шумоизоляционные (листы ГВЛ) и звукопоглощающие (сверхтонкое стекловолокно) слои. Толщина звукоизолирующей панели и количество слоев может изменяться в зависимости от требований конкретной акустической задачи (от 40 до 130 мм). Единственным условием применимости панелей ЗИПС в данном случае является достаточная несущая способность исходной перегородки.

Одним из главных достоинств ЗИПС панелей является исключение путей косвенной передачи звука на панель, и тем самым, увеличение ее дополнительной шумоизоляции. Крайне редко возникают ситуации, когда только одна общая для двух помещений стена излучает шум. Как правило, вместе с ней шум также переизлучают все боковые стены, перекрытия пола и потолка. Конечно, интенсивность звука на них может быть несколько меньше, однако именно к ним монтируются (пусть даже и через упругую прокладку) направляющие профили дополнительной каркасной перегородки из ГВЛ. Панели ЗИПС не имеют жестких связей по контуру, поэтому они эффективны не только в отношении шума, проходящего через стену, на которой они закреплены, но и шума, передающегося от боковых стен и перекрытий.

В случае необходимости увеличения шумоизоляции однослойной перегородки (кирпичной стены и т.п.), панели ЗИПС также являются одним из самых эффективных средств дополнительной изоляции. Комбинация массивной однослойной стены и легкой многослойной облицовки также позволяет решить проблему шумоизоляции от источников звука с мощными низкочастотными составляющими. В этом случае кирпичная стена определяет уровень шумоизоляции на низких частотах, где решающее значение имеет только масса преграды, а на средних и высоких частотах в дело вступает панель дополнительной изоляции ЗИПС.

Все вышесказанное справедливо и в отношении дополнительной каркасной облицовки, но ее эффективность при прочих равных условиях оказывается существенно ниже из-за перечисленных недостатков.

Читайте так же:  Фольга с клеевым слоем
Оцените статью