Контур для теплового насоса

Идея использовать внутреннее тепло Земли для отопления совсем не нова и неоригинальна. И хотя далеко не у всех поблизости есть горячие подземные воды, ее все-таки может использовать каждый. Такую возможность предоставляют геотермальные тепловые насосы. Они извлекают из земли и воды запасы накопленной в них солнечной энергии, и проедают ее в отопительный контур дома.

Теория разработана еще в 1852 знаменитым лордом Кельвином. Реализовал ее он же в 1855 году, и успешно использовал не протяжении многих лет. Несмотря на высокую эффективность, геотермальные тепловые насосы для отопления не находили широкого применения вплоть до конца 20 века. Тогда в 70-х годах в Европе стали активно развивать энергосберегающие технологии, и одним из направлений были тепловые насосы.

Контур для теплового насоса

Наружный блок геотермального теплового насоса выглядит так. И что приятно, так это то, что работать они могут и на отопление и на охлаждение

В чем привлекательность этой идеи: затратив 1 кВт электричества, вы можете получить от 2 кВт до 6 кВт тепла. И это не противоречит законам теплотехники. Просто эта установка тратит энергию не на производство тепловой энергии, а на ее перенос.

Такая разная эффективность — от 2 до 6 — зависит не только от конструктивных особенностей установок, но и от условий эксплуатации. Самая высокая производительность у тепловых насосов может быть достигнута при температуре в отопительном контуре в районе +35 o C. Потому идеально эти установки стыкуются с водяными теплыми полами.

Читайте так же:  Толщина стены из газобетона без утепления

Есть, конечно, и установки, которые нагревают воду в отопительном контуре до 50-65 o C, но, во-первых, стоят они больше, Во-вторых, лучшую эффективность показывают все равно в заданном диапазоне.

Принцип действия геотермального теплонасоса

Тепло у нас под ногами есть в любой среде. Его количество разное в разных регионах, но оно есть повсеместно. И геотермальный тепловой насос отбирает это тепло у природных источников и передает его нагревательному контуру.

Что может стать источником тепла? Любая среда вне помещения, температура которой зимой выше 0 o C. Это близлежащий непромерзающий водоем, речка, даже колодец с достаточным количеством воды. Есть тепло и в грунте: ниже точки промерзания температура всегда положительная.

Контур для теплового насоса

Источником тепла может быть любая среда с температурой выше нуля зимой

Принцип работы геотермального теплового насоса состоит в том, что тепло от источников переносится в установку, где преобразовывается и передается в отопительный контур.

Если говорить чуть подробнее, то все происходит так. В относительно теплой среде находится трубопровод с теплоносителем большой протяженности. Трубопровод чаще всего замкнутый, его движение обеспечивается насосом. Теплоноситель нагревается до температуры среды. Обычно это +5 o C или чуть выше. Проходя по первому теплообменнику-испарителю, он отдает тепло находящемуся во втором контуре хладагенту.

Контур для теплового насоса

Устройство теплового насоса: это три контура с теплоносителями, компрессор и испаритель, сбросный клапан

Хладагент — вещество, которое кипеть начинает при температуре выше -5 o C. В большинстве установок используют фреон. До включения установки он находится в жидком состоянии. Потом, по мере поступления тепла от термальных источников, его температура поднимается. Фреон начинает испаряться, переходит в газообразное состояние. Этот газ уже имеет температуру порядка +5 o C. Он поступает в компрессор, где его сжимают. При сжатии выделяется большое количество тепла, и из компрессора газ уже выходит с температурой от 35 o C до 65 o C. Он поступает в еще один теплообменник — конденсатор, где отдает тепловую энергию теплоносителю, который идет в контур отопления.

Сам фреон, отдав большую часть тепла, частично остывает, но все еще находится в газообразном состоянии при повышенном давлении. Он поступает на сбросный клапан, где давление резко падает, он резко охлаждается и сжижается. После чего снова поступает в испаритель, где начинается новый цикл преобразования.

Источники тепла и способы доставки энергии

Как уже говорилось, источник тепла для теплового насоса — любой объект, имеющий зимой положительную температуру. Большая часть из них — низкопотенциальные, то есть количество тепловой энергии заключено в них этого незначительное. Но это не значит, что использовать эту энергию нельзя. Можно, только придется делать для этого большой контур для ее сбора. И в этом состоит сложность устройства геотермальных тепловых насосов: кроме значительных затрат на оборудование, требуются немалые средства на строительство внешнего контура сбора тепла.

Контур для теплового насоса

Тепловой насос с теплыми полами — идеальная совместимость

Сразу можно сказать, что четкого определения того, какие источники тепла являются геотермальными, а какие нет, вы не найдете. Некоторые считают что геотермальные — это те источники, которые находятся в грунте. Другие говорят, что вода — также подходит под эту категорию: она часто находится под землей, и та, что находится в открытых водоемах, также когда-то протекала в грунте. Тем более что способ переноса тепла одинаков: при помощи циркулирующего по контуру теплоносителя и подавляющее большинство современных агрегатов работать может с любым из этих источников.

Рассмотрим все источники тепла, которые могут подходить под эту категорию. И начнем с самого простого, требующего минимум затрат на обустройство.

Даже зимой подо льдом вода имеет достаточно высокую (относительно воздуха) температуру: от +5 o C до +7 o C. Вся задача состоит в том, чтобы эту энергию перенести к тепловому насосу. Для этого в водоем укладывают полимерные трубы, заполненные незамерзающей жидкостью (чаще всего это соляной раствор, иногда антифриз). В среднем считается, что с метра трубопровода, уложенного в водоеме, можно получить 30 Вт тепла. Исходя из этого, считают протяженность труб. Например, вам для обеспечения теплом дома нужно 12 кВт тепла. Получаем: 12000 Вт : 30 Вт/м = 400 м. Вот столько труб нужно будет уложить в водоем.

Контур для теплового насоса

Энергию у воды можно не только в открытом водоеме. Если близко подпочвенные воды можно использовать скважины

Есть другой вариант. Он приемлем, если потребность в тепле не очень большая, а на участке имеется колодец с хорошим дебетом (высокая скорость притока воды). Понадобиться вторая скважина для сброса воды, но никакого длиннющего контура. Только не путайте! Если в колодце стоит 3 кольца воды, это совсем не значит, что дебет у него хороший. Это значит, что грунтовые воды близко. Но скорость поступления воды (а дебет — это именно она) может быть при этом небольшой.

Нужно будет подавать в дом из колодца необходимое количество «теплой» воды, а остывшую отводить во вторую скважину. Обязателен в этом случае расчет потребности воды и определение параметров циркуляционного насоса.

Грунт

Всем известно, что ниже точки промерзания температура почвы выше 0 o C. Это значит, что тепло оттуда можно перекачать для отопления дома. Делают это двумя способами: при помощи горизонтального коллектора или вертикального.

Горизонтальные геотермальные контура

Для устройства горизонтального геотермального поля требуется большая площадь: от 200 м 2 и больше. На всей этой площади приходится снимать грунт на 30-50 см ниже точки промерзания грунта. На практике это 1,2-2 метра в зависимости от региона. Ниже копать не стоит. В грунте сохраняется энергия, накопленная с лета, а слишком глубоко опустившись можно потерять значительную часть тепла: туда оно просто не проникло.

Контур для теплового насоса

Так выглядит площадка под горизонтальный геотермальный зонд

Необходимая площадь зависит от потребности в тепле и типа грунта: в одних можно забрать 30 Вт с одного метра, в других 60-75 Вт. Самые значительные запасы энергии есть во влажных грунтах с близко расположенными грунтовыми водами. Если возле вашего дома именно такие — вам повезло. Если нет, тоже ничего страшного, просто площадь потребуется больше (и труб тоже). Расстояние между двумя соседними витками трубы 1-1,5 метра.

Контур для теплового насоса

Сколько тепла можно получить с одного метра горизонтального теплового зонда

Для уменьшения занимаемой площади можно использовать спиральную укладку. Это когда контур из труб выкладывается не «змейкой» или «улиткой», а спиралями, которые находят одна на другую. Площади требуются несколько меньшие, но все-таки значительные.

Большие пространства есть далеко не возле каждого дома. Тем более что дальнейшее их использование ограничено: нельзя высаживать растения с мощной корневой системой (деревья) или ставить капительные строения. Если вы не можете выделить такой участок под сбор тепла, или не хотите выполнять подобный объем земельных работ, можно использовать вертикальные скважины.

Контур для теплового насоса

Чтобы уменьшить площадь под геотермальное поле можно использовать скрученные в спирали трубы

Недостатки горизонтального поля:

  • Большой объем земляных работ.
  • Летом режим пассивного охлаждения недоступен.
  • Постепенное понижение температуры к концу отопительного периода (и это тоже нужно учитывать при расчете длины трубопровода).
  • После завершения укладки труб нельзя сразу приступать к ландшафтным или другим работам: нужно ждать усадки грунта. А это не менее года.

Вертикальные зонды

Ниже 20 метров от поверхности температура грунта повышается. На этой глубине она вне зависимости от погоды и времени года всегда стабильна: от 10 o C и выше (в зависимости от региона). Для того чтобы добраться до этого тепла делают скважины для тепловых насосов. Они обычно дают больше тепла, потому требуется не такое значительное их количество.

Но количество энергии, которою можно «выкачать» сильно зависит от типа грунта. Меньше всего дают песчаные почвы: 30 Вт/м, много энергии содержится в граните — до 75 Вт/м. Потому очень может разниться и длина требуемой скважины.

Контур для теплового насоса

Сколько тепла можно «снять» с одного метра скважины в грунте

Бурение скважин — далеко не самое дешевое удовольствие. Особенно на большие глубины: для этих целей используется мощная техника, стоимость работы которой велика. Но не обязательно делать одну скважину. Можно пробурить несколько на меньшую глубину, важно только чтобы суммарная их протяженность совпадала с рассчитанной. В этом случае под геотермальное поле занимается меньший участок, но он тоже значительный. К тому же требуется организовать коллектор для сбора потоков от всех зондов, а это еще дополнительное оборудование, и земляные работы (трубы от одной скважины к другой прокладывают ниже уровня промерзания).

Контур для теплового насоса

Вертикальный зонд — скважина приличной глубины. Но такое бурение очень дорого, так что можно сделать некоторое количество более коротких скважин

Недостатки вертикальных зондов:

  • Высокая стоимость бурения.
  • Значительные площади под геотермальное поле: минимальное расстояние между скважинами — 8 метров.
  • При большой глубине скважин есть ежегодное снижение температуры. Через несколько лет процесс сильно замедляется, но тепла со временем поступает меньше. Это тоже нужно учитывать при расчетах.

Кластерное бурение

Что делать, если и под вертикальные зонды у вас места не хватает? Есть так называемое кластерное бурение. Это когда от общего центра скважины расходятся в разные стороны лучами. Для этой технологии требуется выделить участок в 4 м 2 . В этом квадрате снимается грунт и устраивается своеобразный колодец, в который потом заводят трубы от зондов. В принципе, этот центр можно устроить даже в подвале дома.

Для такой системы зондов, конечно, требуется специальная техника, но она не очень мощная: глубина бурения средняя, высокая производительность ни к чему. Эта технология, как и многие другие, разработана в Европе. Там обращают внимание не только на безопасность, но и на сохранение природы и бережное отношение к частным владениям. Потому некоторые установки для кластерного бурения имеют резиновые гусеницы и практически не повреждают придомовую территорию. В целостности остаются и газоны, и дорожки.

В пробуренные скважины опускают заполненные теплоносителем трубы. Тут опять таки-есть варианты. По одной технологии используются, как и в других внешних контурах, полимерные трубы, а в других — металлические. Металл применяется особый, коррозионно-стойкий. Его строк эксплуатации 50-70 лет. А чем он лучше? У него выше теплопроводность, то есть тепло переносится эффективнее. Это значит, что с одного метра скважины, «снять» можно больше тепла. Потому и скважины в этом случае должны быть менее длинными.

Контур для теплового насоса

Кластерное бурение экономит землю

Работу установки кластерного бурения вы увидите в видео. Тут же можно оценить размеры геотермального насоса для дома (площадь 250 м 2 ).

Производители и отзывы

В Европе геотермальные тепловые насосы для отопления окупают себя за несколько лет. Но у них стоимость отопления гораздо выше, как и цена на энергоносители. Для нашей же страны, потраченные на установку 10 тыс. — 15 тыс. долларов, возвращаться будут годами, если не десятилетиями. Это не значит, что оно не окупится вовсе (хотя может случиться и так), но очень нескоро. И, тем не менее, устанавливать геотермальный тепловой насос из Китая не стоит. Хоть они и дешевле, и порой значительно, но у них нет ни запчастей, ни сервисов, ни гарантийных обязательств. Если что-то с техникой случится, вы останетесь сами со своей проблемой.

Какие установки стоит приобретать? В первую очередь это немецкие. В Германии самые строгие законы, нормирующие строительные материалы и оборудование для дома, и очень жесткая сертификация. Если установки допущены к эксплуатации в Германии, то они точно безопасны и качественны. Примеров тому множество в любой области строительства. То самое, знаменитое «немецкое качество» присуще и геотермальным насосам для дома.

Контур для теплового насоса

Схема организации системы отопления дома с использованием тепловых насосов

Кроме немецких агрегатов хорошие отзывы имеют еще многие другие европейские производители. Часть из них производит подобную аппаратуру уже более 50 лет, так что технологии давно выверены и отлажены. К примеру, геотермальные тепловые насосы Nibe в Швеции устанавливались не только в квартирах и частных домах. Термальный насос Nibe был смонтирован даже на крупной свиноводческой ферме, где от его тепла греются поросята. В этом варианте, кстати, зонды закладывались не в грунт и не в скважины. Они отбирали тепло у навозной жижи: проложили наружный контур вдоль бортов сточных каналов. Вот уж точно бесплатный источник тепла. Владелец фермы очень доволен: его вложения окупились за 1,5 года.

В геотермальных тепловых насосах Daikin применяется инверторное управление, что позволяет снизить затраты электроэнергии еще на 20% по отношению к аналогичным агрегатам обычного типа.

В шведских геотермальных насосах Danfoss собраны сразу три запатентованные технологии. Две из них позволяют при меньших затратах быстрее нагревать воду для ГВС и достигать более высоких температур в контуре отопления. Еще одна руководит работой циркуляционных насосов, оптимизируя их скорость. Это позволяет добиться максимальной производительности.

Итоги

Геотермальные насосы — не самая дешевая затея. Если у вас есть возможность подключить газ, и эта затея обойдется вам меньше, чем 15 000 долларов, подключайте газ. Если такой возможности нет или сумма получается больше — целесообразно установить тепловой насос. И лучше геотермальный. Он хоть и требует больших вложений на старте, но работает стабильнее и показывает большую производительность. Сумма вложений — очень приблизительная и зависит от конкретных условий. Но эти устройства тем и отличаются, что проект и расчет геотермального теплового насоса — вещь сугубо индивидуальная и считается под каждый проект. Даже на двух соседних участках условия (и сумма) могут значительно отличаться.

Целью данной работы является расчет земляного коллектора, подбора вертикального зонда теплового насоса.

Расчет земляного коллектора. Расчет земляного коллектора для тепловых насосов «грунт-вода». Отбор тепла из грунта осуществляется горизонтальными коллекторами или вертикальными зондами рисунок 13.

Тепло из грунта отбирается горизонтальным геотермальным контуром, который переносит, а затем отдает его рабочей среде в тепловом насосе. Под источником тепла, применительно к грунту, понимается верхний слой почвы глубиной до 1,2 — 3,5 м.

Поступающее из глубинных слоев вверх тепло составляет лишь 0,063 — 0,1 Вт/м 2 .

Контур для теплового насоса

Рис. 13. Горизонтальный коллектор и зонд для теплосъема с грунта

Количество полезного тепла и размеры необходимой площади зависят от теплофизических свойств грунта и от энергии инсоляции, т. е. от климатических условий.

Такие термические характеристики верхнего слоя грунта, как объемная теплоемкость и теплопроводность, очень сильно зависят

от состава и состояния грунта. Аккумулирующие свойства и теплопроводность грунта тем выше, чем больше содержание в нем воды, чем больше доля минеральных компонентов и чем меньше количество пор.

Удельный отбор мощности для грунта при этом составляет от 10 до 35 Вт/м 2 .

Этими показателями определяется площадь грунта в зависимости от теплопотребления здания и состояния почвы.

Теплосъем почвы в зависимости от состояния грунта:

Сухая песчаная почва q = 10 — 15 Вт/м 2 ;

Влажная песчаная почва q = 15 — 20 Вт/м 2 ;

Сухая глинистая почва q = 20 — 25 Вт/м 2 ;

Влажная глинистая почва q = 25 — 30 Вт/м2

Почва с грунтовыми водами q = 30 — 35 Вт/м 2 .

Необходимая площадь грунта определяется в зависимости от холодопроизводительности теплового насоса: разность между тепловой нагрузкой теплового насоса и его потребляемой мощностью:

где Qх – холодопроизводительность теплового насоса, кВт; Qтн — тепловая нагрузка теплового насоса, кВт; N — потребляемая мощность, кВт.

Тепловые насосы имеют показатели температур B0/W5. B0 — входная температура рассола, 0 C,W — выходная температура теплоносителя, 0 C и холодопроизводительность, кВт. При удельном отборе мощности q, Вт/м 2 грунта определяется необходимая площадь для геоконтура составляет, м 2 :

F = Контур для теплового насоса

Для отбора тепла с данной площади грунта требуется прокладка нескольких петель полиэтиленовых труб, заполненных специальной жидкостью (рассолом).

Для расчета длины контура необходимо также учитывать шаг укладки и диаметр трубы. Шаг прокладки труб при длине трубных контуров 100 м.

полиэтиленовой трубы 20 × 2,0: прибл. 0,33 м (l = 3 п.м трубы/м 2 );

полиэтиленовой трубы 25 × 2,3: прибл. 0,50 м (l = 2 п.м трубы/м 2 );

для полиэтиленовой трубы 32 × 2,9: прибл. 0,70 м (l = 1,5 п.м трубы/м 2 ).

Длина траншеи, м:

L = F Контур для теплового насосаl,

где L – длина траншеи, п.м.; l — п.м трубы/м 2

Определение числа веток коллектора из труб разного диаметра:

n = Контур для теплового насоса,

где 100 – длина ветки коллектора, м.

Геотермальный контур может быть выполнен трубами различного диаметра, в зависимости от теплосъема грунта. Чем больше диаметр, тем меньше метраж траншеи, что значительно сэкономит средства при земляных работах.

Так компания SunDue разработала и запатентовала способ укладки геотермального контура «Многоэтажка». Он позволяет снять 75 ватт с погонного метра траншеи, и еще больше сэкономить на земляных работах, а также позволяет уменьшить площадь дорогостоящего земельного участка, выделяемую под геоконтур.

В качестве рассола используется пропиленгликоль. Количество теплоносителя в трубопроводе таблица 9.

Определение объема теплоносителя циркулирующего по контуру:

Vр = F Контур для теплового насосаg

Таблица 9. Количество теплоносителя в трубопроводе

Диаметр, мм Теплоноситель g, л Диаметр, мм Теплоноситель g, л
20х2,0 0.201 50х2,9 1,595
25х2,3 0,327 50х4,46 1,308
32х3,0 0,531 63х5,8 2,070
40х2,3 0,984 63х3,6 2,445
40х3,7 0,835

Земляной зонд – двойной U-образный трубчатый зонд. Для небольших земельных участков, а также при дооснащении существующих зданий, земляные зонды являются альтернативой горизонтальному коллектору.

Другим вариантом являются две двойных U-образных петли полимерного трубопровода в одной скважине. Все промежутки между трубами и грунтом заполняются материалом с хорошей теплопроводностью — бетонитом рисунок 14.

Контур для теплового насоса

Рис. 14. U-образный геозонд

RL — Обратная магистраль рассольного контура; VL — Подающая

магистраль рассольного контура; A — Бетонит-цементная суспензия;

B Защитный колпачок

Охлажденный теплоноситель (рассол) перетекает к нижней точке, а затем обратно — к испарителю теплового насоса. При этом он отбирает тепло. Удельный тепловой поток в значительной степени непостоянен и составляет от 20 до 100 Вт/м длины зонда. Если исходить из среднего значения 50 Вт/с — это означает, что, например, для теплового насоса холодопроизводительностью 10 кВт требуется зонд длиной 200 м или четыре зонда по 50 м.

Расстояние между 2 земляными зондами должно составлять:

— при глубине до 50 м минимум 5 м

— при глубине до 100 м минимум 6 м

Возможный удельный отбор мощности для земляных зондов (двойных U-образных трубчатых зондов) с погонного метра таблица 15.

Таблица 15. Удельный отбор мощности для земляных зондов

Грунт удельный отбор мощности, Вт/м
Плохой грунт (сухая осадочная порода) λ 3,0 Вт/(м · K)
Галька, сухой песок 1 необходимо предусмотреть распределитель рассола. Диаметр подводящего трубопровода должен быть больше диаметра трубных контуров, рекомендуется PE 32 — PE 63.

Земляной зонд в виде двойной U-образной трубы, подающая магистраль: 10 м (2 × 5 м) из полиэтиленовой трубы 32 × 3,0 (2,9)= 2 × 100 м × 2 × 0,531 л/м + 10 м × 0,531 л/м = 217,7 л

Предусмотрено 220 л, включая количество рассола для теплового насоса.

Расчет источников тепла для тепловых насосов «вода-вода».

Грунтовые воды. Тепловые насосы вода-вода используют тепло, содержащееся в грунтовых водах. Тепловой насос «вода-вода» рисунок 15.

Контур для теплового насоса

Рис. 15. Тепловой насос «вода-вода»

A — тепловой насос; B — поглощающая скважина;

C — добывающая скважина; D — напорная труба; E — нагнетательная труба; F — обратный клапан;. G — погружной насос;. H — направление потока грунтовых вод; K — колодезная скважина; L — насос промежуточного

контура; M — теплообменник промежуточного контура

Тепловые насосы на грунтовых водах позволяют дать высокие показатели мощности. Грунтовые воды в течение всего года имеют постоянную температуру от 7 до 12 °C (для Европы). Поэтому, по сравнению с другими источниками тепла, требуется сравнительно небольшое повышение температуры, чтобы иметь возможность использовать воды для отопления.

Рекомендуется между отбором добывающей скважиной и возвратом воды в грунт поглощающей скважиной соблюдать расстояние не менее 5м. Добывающая и поглощающая скважины должны быть ориентированы в направлении потока грунтовых вод, чтобы исключить "замыкание" потоков. Поглощающая скважина должна быть выполнена таким образом, чтобы выход воды происходил ниже уровня грунтовых вод.

Посредством нагнетательного насоса грунтовые воды подаются к испарителю теплового насоса. Там они отдают свое тепло рабочей среде или хладагенту, который при этом испаряется. Грунтовые воды в зависимости от конструкции установки охлаждаются до разности температур 5K, в остальном же их качество остается неизменным. В завершение вода возвращается в подземные грунтовые воды через поглощающую скважину.

Для приближенного расчета можно использовать следующую схему. Теплообменник промежуточного контура теплового насоса на рисунке 16.

Контур для теплового насоса

Рис. 16. Теплообменник промежуточного контура

A – вода; B — рассол (антифриз)

Понижение 1 м 3 воды на один градус дает 1 кВт тепла. Если на входе в тепловой насос имеем 10 градусов, а на выходе 6 0 С, то с 1 м 3 воды получаем 4 кВт тепла.

Насос 10 кВт Контур для теплового насоса=2,5 м 3 . Для полноценной работы насоса такой мощности необходим дебет скважины 2,5 м 3 воды в час.

Расчеты:

Как известно, тепловые насосы используют бесплатные и возобновляемые источники энергии: низкопотенциальное тепло воздуха, грунта, подземных, сточных и сбросовых вод технологических процессов, открытых незамерзающих водоемов. На это затрачивается электроэнергия, но отношение количества получаемой тепловой энергии к количеству расходуемой электрической составляет порядка 3 – 6.

Источниками низкопотенциального тепла могут быть наружный воздух температурой от – 10 до + 15 0 С, отводимый из помещения воздух (15 – 25 0 С), подпочвенные (4 – 10 0 С) и грунтовые (более 10 °C) воды, озерная и речная вода (0 – 10 0 С), поверхностный (0 – 10 0 С) и глубинный (более 20 м) грунт (10 0 С).

Возможны два варианта получения низкопотенциального тепла из грунта: укладка металлопластиковых труб в траншеи глубиной 1,2 – 1,5 м либо в вертикальные скважины глубиной 20 – 100 м. Иногда трубы укладывают в виде спиралей в траншеи глубиной 2 – 4 м. Это значительно уменьшает общую длину траншей. Максимальная теплоотдача поверхностного грунта составляет 50 – 70 кВт·ч/м 2 в год. Срок службы траншей и скважин составляет более 100 лет.

Пример расчета теплового насоса

Исходные условия: Необходимо выбрать тепловой насос для отопления и горячего водоснабжения коттеджного двухэтажного дома, площадью 200м 2 ; температура воды в системе отопления должна быть 35 0 С; минимальная температура теплоносителя – 0 0 С. Теплопотери здания-50 Вт/м 2 . Грунт глиняный, сухой.

Требуемая тепловая мощность на отопление: 200 Контур для теплового насоса50 = 10 кВт;

Требуемая тепловая мощность на отопление и горячее водоснабжение: 200 Контур для теплового насоса50 Контур для теплового насоса1,25 = 12,5 кВт.

Для обогрева здания выбран тепловой насос WWHRPC 12 мощностью 14,79 кВт (по типоразмеру), затрачивающий на нагрев фреона 3,44 кВт. Теплосъем с поверхностного слоя грунта, сухая глина q = 20 Вт/м.

1. Требуемая тепловая мощность коллектора, кВт:

2. Суммарная длина труб, м:

L = Контур для теплового насоса= Контур для теплового насоса= 567,5

Для организации такого коллектора потребуется 6 контуров длиной по 100 м;

3. При шаге укладки 0,75 м необходимая площадь участка, м 2 :

F = 600 Контур для теплового насоса0,75 = 450;

4. Общий расход 25% гликолевого раствора, м 3 /ч:

Vs = Контур для теплового насоса= Контур для теплового насоса= 3,506,

где с — теплоемкость раствора при температуре 0 0 С, составляет 3,7 кДж/(кг·К); ρ — плотность – 1,05 г/см 3 ; Контур для теплового насосаt – разность температур между подающей и возвратной линиями, обычно принимается равной 3 0 С.

Расход на один контур равен 0,584 м 3 /ч. Для устройства коллектора выбираем металлопластиковую трубу типоразмера 32 (например, РЕ32х2). Потери давления в ней составят 45 Па/м; сопротивление одного контура – примерно 7 кПа; скорость потока теплоносителя – 0,3 м/с.

Высокотемпературные геотермальные тепловые насосы Dimplexприведены в приложениях 2, 3.

Расчет горизонтального коллектора теплового насоса

Съем тепла с каждого метра трубы зависит от многих параметров: глубины укладки, наличия грунтовых вод, качества грунта и т.д. Ориентировочно можно считать, что для горизонтальных коллекторов он составляет 20 Вт/м. Более точно: сухой песок – 10, сухая глина – 20, влажная глина – 25, глина с большим содержанием воды – 35 Вт/м.

Разницу температуры теплоносителя в прямой и обратной линии петли при расчетах принимают обычно равной 3 °С. На участке над коллектором не следует возводить строений, чтобы тепло земли пополнялось за счет солнечной радиации.

Минимальное расстояние между проложенными трубами должно быть 0,7 – 0,8 м. Длина одной траншеи составляет обычно от 30 до 120 м. В качестве теплоносителя первичного контура рекомендуется использовать 25% раствор гликоля. Теплоемкость раствора при температуре 0 °С составляет 3,7 кДж/(кг·К), плотность – 1,05 г/см 3 . При использовании антифриза потери давления в трубах в 1,5 раза больше, чем при циркуляции воды. Для расчета параметров первичного контура теплонасосной установки потребуется определить расход антифриза:

Vs = Контур для теплового насоса

Последняя величина рассчитывается как разница полной мощности теплового насоса Qwp и электрической мощности, затрачиваемой на нагрев фреона P, кВт:

Суммарная длина труб коллектора L и общая площадь участка под него F рассчитываются по формулам:

L = Контур для теплового насоса,

F = L Контур для теплового насосаdа,

где q – удельный теплосъем, Вт/м; da – расстояние между трубами, шаг укладки.

Расчет зонда.

При использовании вертикальных скважин глубиной от 20 до 100м в них погружаются U-образные металлопластиковые или пластиковые (при диаметрах выше 32 мм) трубы. Как правило, в одну скважину вставляется две петли, после чего она заливается цементным раствором. В среднем удельный теплосъем такого зонда можно принять равным 50 Вт/м. Можно также ориентироваться на следующие данные по теплосъему:

сухие осадочные породы – 20 Вт/м;

каменистая почва и насыщенные водой осадочные породы – 50 Вт/м;

каменные породы с высокой теплопроводностью – 70 Вт/м;

подземные воды – 80 Вт/м.

Температура грунта на глубине более 15 м постоянна и составляет примерно +10 0 С. Расстояние между скважинами должно быть больше 5м. При наличии подземных течений, скважины должны располагаться на линии, перпендикулярной потоку. Подбор диаметров труб проводится исходя из потерь давления для требуемого расхода теплоносителя. Расчет расхода жидкости может проводиться для t = 5 0 С.

Пример расчета. Исходные данные – те же, что в приведенном выше расчете горизонтального коллектора. При удельном теплосъеме зонда 50 Вт/м и требуемой мощности 11,35 кВт длина зонда L должна составить 225 м. Для устройства коллектора необходимо пробурить три скважины глубиной по 75 м. В каждой из них размещаем по две петли из металлопластиковой трубы типоразмера 25 (РЕ25х2.0); всего – 6 контуров по 150 м.

Общий расход теплоносителя при .t = 5 0 С составит 2,1 м 3 /ч; расход через один контур – 0,35 м 3 /ч. Контуры будут иметь следующие гидравлические характеристики: потери давления в трубе – 96 Па/м (теплоноситель – 25% раствора гликоля); сопротивление контура – 14,4 кПа; скорость потока – 0,3 м/с.

Задание для самостоятельной работы

1. Назвать низкопотенциальные источники тепловых насосов.

2. Сделать расчет коллектора для одного из грунтов:

Сухая песчаная почва q = 15 Вт/м 2 ;

Влажная песчаная почва q = 20 Вт/м 2 ;

Сухая глинистая почва q = 25 Вт/м 2 ;

Влажная глинистая почва q = 30 Вт/м2

Почва с грунтовыми водами q = 35 Вт/м 2 .

3. Принцип прокладки горизонтального коллектора и вертикального зонда.

4. С чего складывается мощность теплового насоса.

5. Объем теплоносителя циркулирующего в коллекторе от чего зависит.

ПРАКТИЧЕСКАЯ РАБОТА №7

Контур для теплового насоса

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Контур для теплового насоса

Контур для теплового насоса

Папиллярные узоры пальцев рук — маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Контур для теплового насоса

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

Контур для теплового насоса

Тепловые насосы работают наподобие кондиционеров. Иногда их энергетическая эффективность практически одинакова. При этом она превышает этот показатель у нагревательных приборов традиционной конструкции, например, электрических обогревателей. В статье рассказываем, как выбрать тепловой насос для загородного дома.

Все о тепловых насосах для загородного дома

Как устроен тепловой насос

Тепловой насос переносит тепло одной среды в другую с помощью трёх взаимосвязанных тепловых контуров. В качестве первой среды используют атмосферный воздух, вода или грунт. В качестве второй — или теплоноситель, нагревающий радиаторы, или водяной тёплый пол, или воздух внутри помещения.

Типы тепловых насосов

  • воздух — воздух (этот тип и используется в бытовых кондиционерах);
  • вода — воздух;
  • земля — воздух;
  • воздух — вода;
  • вода — вода;
  • земля — вода.

Наибольшее распространение получили модели, в которых первой средой выступает воздух или земля, так как пригодные для использования водоёмы есть не везде. Второй средой является вода, из-за популярности водяного отопления.

По среде, выступающей в роли источника тепла, проложен контур из труб, по нему циркулирует теплоноситель. В процессе прохождения по нему теплоноситель приобретает такую же температуру, как и среда. Затем он поступает на теплообменник испарителя, где нагревает до кипения жидкий фреон, находящийся во вторичной системе. Газообразный фреон переходит в компрессор, где при сжатии происходит его сильный нагрев до 55–75 °С. Далее фреон попадает в конденсатор, где нагретый газ отдаёт тепло среде номер два, воздуху или жидкости-теплоносителю из системы отопления.

Контур для теплового насоса Контур для теплового насоса

Контур для теплового насоса

Контур для теплового насоса

Эффективность теплового насоса

Коэффициент эффективности — отношение мощности обогрева к потребляемой мощности, грубо говоря — сколько киловатт тепловой мощности мы получим на каждый потребляемый киловатт электроэнергии. Для электрического ­обогревателя этот коэффициент примерно равен единице. А вот у кондиционеров и тепловых насосов он может быть 3,0-5,0 и выше.

Помимо теплового насоса вам потребуется теплообменный контур, который может быть дороже самого устройства, если он прокладывается в земле. Воздушный контур будет стоить гораздо дешевле, но его применение в быту ограничивается, во-первых, из-за заметного шума, который производит вентилятор. А во-вторых, низкая температура воздуха в сильный мороз резко снижает эффективность теплообмена. В сильный мороз потребуется устройство бивалентной системы отопления, в которой используется два источника тепла. Бивалентная система расширяет рабочий диапазон уличных температур. Скажем, прибор работает до –20 °С, а при дальнейшем понижении включается дополнительный источник.

С земляным контуром таких проблем не возникает. Температура грунта ниже уровня промерзания не опускается ниже 0 °С. На глубине от 3-4 до 40-50 м она примерно равна среднегодовой температуре воздуха для данной местности, а при глубине ниже начинает постепенно повышаться. И работает грунтовой теплообменник практически бесшумно.

Практика показывает, что грунтовой отопительный комплекс окупается примерно за 20 лет. И это при современных ценах на электричество. В будущем, скорее всего, электричество будет расти в цене, а срок окупаемости, соответственно, сокращаться. Срок службы теплового насоса, заявленный производителями, обычно превышает 20 лет, а срок службы и вовсе доходит до 70–100 лет. Так что его использование, действительно, может быть экономически оправданно.

Контур для теплового насоса

Оборудование для теплового насоса

Выбор отопительного оборудования обычно начинается с определения его требуемой мощности. Производится тепловой расчёт помещения, подсчёт теплопотерь, учитывается нужное количество горячей воды для ГВС. Этот расчёт поручать лучше специалисту, чтобы избежать ошибок. Примерный порядок цифр выдают программы-калькуляторы на сайтах компаний-производителей.

Далее можно выбирать тип устройства с учётом участка. Если в вашем распоряжении имеется достаточно большой водоём (несколько сотен кубических метров), то, возможно, он подойдёт для размещения системы. Последний напоминает змеевик из гибких полимерных труб, его аккуратно укладывают на дно и закрепляют там грузом.

Воздушные теплообменники вполне годятся для ветреных южных регионов нашей страны или для бивалентных систем. Их можно размещать на удалении до 30 м от внутреннего блока. На деле их стремятся расположить как можно ближе к дому, так как длинные соединительные линии увеличивают потери и снижают полезную мощность. В идеале это глухая стена дома, подальше от окон спален.

Важный параметр — минимальная температура наружного воздуха в режиме нагрева. У специально адаптированных к морозам моделей она может составлять –25 °С.

Грунтовой коллектор может быть устроен несколькими способами. Например, в виде горизонтальной прокладки длинного (несколько сотен метров) трубопровода на плоскости с заглублением выше уровня промерзания (обычно 1,5–2,0 м). Трубопровод может быть уложен по периметру участка или змейкой, как трубопровод тёплого пола, но с гораздо большим шагом. Общая занимаемая площадь участка земли составляет несколько соток, причём возможности дополнительного использования этой земли существенно ограниченны. На ней не получится разводить огород или сажать деревья. Поэтому многие домовладельцы считают горизонтальную прокладку коллектора нерациональной и предпочитают вертикальную, в виде нескольких скважин, разнесённых друг от друга на 5–10 м. Или в виде одного «куста» скважин (скважины бурятся из одной точки на поверхности, но не вертикально, а под углом обычно не менее 30° по азимуту). Такой «вертикальный» подход позволяет сэкономить на площади, но удорожает строительство на 30-50 %.

В силу технических особенностей тепловой насос лучше применять для загородного дома, в котором вы живете долго. Максимальной эффективности они достигают в сочетании с системами «тёплый пол», которые при этом инерционны. Экономический эффект будет прямо пропорционален интенсивности использования. В отечественных условиях (Европейская часть России) наибольшее распространение получили варианты «рассол (земля) — вода» с вертикальными зондами. Они обес­печивают возможность полного покрытия нагрузок по отоплению и ГВС практически независимо от климатических условий.

Оцените статью