Воздушный солнечный коллектор с аккумулятором тепла

Отопление частного дома можно организовать различными способами. Чаще всего это подключение к центральной системе теплоснабжения или установка индивидуальных отопительных приборов, которые нагревают теплоноситель путем сжигания газа, жидкого или твердого топлива. Реже владельцы небольших коттеджей для обогрева используют электрические котлы и различные типы тепловентиляторов, направляя воздушный поток в жилое помещение.

Сегодня существуют альтернативные методы отопления, например, устройства, которые превращают солнечное излучение в тепловую энергию. Солнечные коллекторы для отопления дома достаточно эффективны, полностью экологичны и не требуют особого ухода.

Почему использовать солнечное отопление выгодно

Система отопления от солнечных коллекторов имеет несколько очень значимых достоинств:

  • солнечное тепло бесплатно и им можно пользоваться во всех уголках планеты, несмотря на климатические условия;
  • использование энергии солнца предполагает затраты исключительно на приобретение установки, все остальное время солнечный коллектор работает полностью автономно;
  • конструкция системы автономного отопления с солнечным коллектором достаточно проста, поэтому ее можно даже сделать своими руками.

Воздушный солнечный коллектор с аккумулятором тепла

Важно понимать, что самодельный коллектор и аккумулятор тепловой энергии будет иметь достаточно низкий КПД по сравнению с промышленными образцами, но все равно позволит значительно сэкономить средства на горячем водоснабжении дома.

Читайте так же:  Какой предохранительный клапан ставить на котел

Самый простой расчет показывает, что коллектора площадью 3 м2 достаточно не только для создания источника горячей воды в небольшом частном доме, но и для его отопления в период межсезонья. Это ощутимо снижает затраты на использование энергоресурсов, а следовательно, и ваш семейный бюджет.

Устройство гелиоустановки

Солнечные коллекторы для отопления и создания горячего водоснабжения дома состоят из следующих компонентов:

  • устройство для нагрева воды или другого теплоносителя;
  • аккумулятор тепловой энергии;
  • контур для перемещения тепловой энергии теплоносителем.

Воздушный солнечный коллектор с аккумулятором тепла

Солнечный коллектор для обустройства отопления представляет собой систему трубок с теплоносителем, в качестве которого выступает воздух, вода, пропилен-гликоль или любая другая незамерзающая жидкость. В качестве аккумулятора тепловой энергии выступает емкость со змеевиком, по которому циркулирует поступивший из коллектора теплоноситель. Тепловой контур служит для объединения устройства нагрева воды, воздуха или антифриза с аккумулятором тепла.

Принцип работы

Солнечная энергия попадает в коллектор, где нагревает теплоноситель, который циркулирует в гелиоустановке. После нагрева он попадает в аккумулятор тепла, где происходит теплообмен между змеевиком и водой. Нагретая вода из аккумулятора поступает в систему отопления или горячего водоснабжения дома.

Воздушный солнечный коллектор с аккумулятором тепла

Циркуляция воды в гелиосистеме происходит самотеком или при помощи циркуляционного насоса (в зависимости от назначения системы и способа установки бака-аккумулятора по отношению к коллектору).

Естественное движение воды или воздуха по контуру обусловлено принципом конвекции, когда после нагрева жидкость стремится вверх от коллектора к аккумулятору тепла.

Если брать в расчет, что гелиосистема будет использоваться только для горячего водоснабжения, то кроме солнечного коллектора и аккумулятора тепла больше ничего не нужно. Если систему планируется использовать для отопления дома, то для прокачки теплоносителя через радиаторы может потребоваться насос.

Типы поглотителей тепла

Современная промышленность освоила производство нескольких типов нагревательных теплообменников для солнечных отопительных систем:

Воздушный солнечный коллектор с аккумулятором тепла

Все они работают по одному принципу, но имеют некоторые конструктивные особенности и разницу в КПД. Для правильного выбора того или иного типа гелиоустановки необходимо знание их особенностей и грамотный расчет. Рассмотрим каждый тип солнечного коллектора более подробно.

Плоский нагревательный теплообменник

Такой тип солнечного коллектора для отопления состоит из плоского, теплоизолированного с трех сторон короба, заполненного адсорбирующим тепло веществом. Внутри этого вещества находится теплообменник из тонкостенных металлических труб, по которому циркулирует вода или пропилен-гликоль.

Воздушный солнечный коллектор с аккумулятором тепла

Конструкция плоского поглотителя солнечной энергии и расчет необходимых его параметров достаточно просты, поэтому именно этот вид «нагревателя», используют для изготовления отопительной гелиосистемы своими руками.

Вакуумный теплообменник

Вакуумный поглотитель тепла состоит из стеклянных труб, внутри которых находятся трубки меньшего диаметра с адсорбентом, аккумулирующим солнечное тепло. Внутри трубок с адсорбентом проложены металлические трубочки, по которым движется теплоноситель.

Воздушный солнечный коллектор с аккумулятором тепла

Между стеклянной трубкой большого диаметра и трубкой с аккумулирующим тепло веществом создан вакуум, который препятствует утечке тепла из адсорбента в атмосферу.

КПД такой установки самый высокий среди всех типов солнечных коллекторов. Исходя из мощности устройства производят расчет его необходимой площади для нагрева теплоносителя.

Воздушный коллектор для обогрева дома

В таком устройстве в качестве теплоносителя используется воздух, циркуляция которого осуществляется как естественным способом, так и при помощи вентилятора. Как правило, воздушный коллектор используют исключительно для обогрева в период межсезонья небольших дачных построек, так как такая конструкция имеет достаточно низкий КПД. Кроме того, для нагрева воды и создания горячего водоснабжения дома эта установка не подходит, поэтому используется нашими соотечественниками крайне редко.

Воздушный солнечный коллектор с аккумулятором тепла

Несмотря на низкую эффективность воздушный поглотитель имеет два достоинства: простую конструкцию и отсутствие теплоносителя (воды), а вместе с ней и коррозии, течей, проблем с замерзанием и пр.

Создание солнечного коллектора своими руками

Для создания плоского поглотителя солнечного тепла потребуется достаточно сложный расчет необходимой площади теплообменника, объема емкости и длины контура. Самостоятельный расчет требует соответствующих знаний, опыта и исходных данных. Для упрощения задачи вам будет представлено три основных типоразмера гелиосистемы:

Воздушный солнечный коллектор с аккумулятором тепла

  • объем аккумуляторного бака в 100-150 л длина трубы теплообменника 7 м, площадь коллектора 2 м2;
  • объем аккумуляторного бака в 150-300 л длина трубы теплообменника 9 м, площадь коллектора 3 м2;
  • объем аккумуляторного бака в 200-400 л длина трубы теплообменника 12 м, площадь коллектора 4 м2.

Инструкция по самостоятельной сборке.

Короб

Сделать его можно из фанерного или пластикового листа и деревянных реек, закрепленных по его периметру в качестве бортов.

Теплообменник

Для его изготовления необходимо сварить решетку или согнуть из металлических труб, которые и будут использоваться для нагрева теплоносителя. Готовое изделие закрепить скобами на второй лист пластика или фанеры и окрасить черной матовой краской.

Воздушный солнечный коллектор с аккумулятором тепла

Приклеить утеплитель по всей площади короба.

Сборка

Установить теплообменник в подготовленный короб. Сверху поглотителя установить стекло, предварительно промазав места его соприкосновения с коробом герметиком на основе силикона. Самодельный поглотитель солнечного тепла готов.

Изготовление аккумулятора тепла

Из медной трубы следует сделать змеевик, после чего поместить его в подготовленную емкость, предварительно проделав отверстия для входа и выхода теплоносителя. Вывести через уплотнения из аккумулятора концы теплообменника.

Утепление

Необходимо тщательно утеплить бак-аккумулятор минеральной ватой.

Для сохранности утеплительного слоя закрыть его листом оцинкованного металла, создав своеобразный «чехол».

Монтаж

Следует изготовить опорную конструкцию под аккумулятор тепла и установить рядом с ним готовый солнечный коллектор. После чего все устройства соединить тепловым контуром.

Запуск системы

Для нагрева воды и подачи ее в здание следует заполнить систему антифризом, а аккумулятор тепла водой. Через 20-30 минут вода в баке начнет нагреваться, после чего ее можно использовать для отопления помещения или других нужд.

Воздушный солнечный коллектор с аккумулятором тепла

Воздушные коллекторы в зимнее время года сокращают расход топлива (газа, электричества), на котором работает котёл до 52%. Летом модуль работает на поддержание влажностного микроклимата и кондиционирование помещений.

Как устроен воздушный коллектор

Принцип работы основан на простых физических законах. Солнечные лучи проникая в атмосферу земли практически не отдают тепла. Нагрев воздуха происходит после того как ультрафиолет попадает на твердые поверхности. Под действием солнечных лучей грунт и другие предметы нагреваются. Происходит теплообмен.

Устройство воздушных солнечных коллекторов использует описанное явление, аккумулируя тепло и направляя его в помещение. В конструкции присутствуют следующие детали:

  • корпус с теплоизоляцией;
  • нижний экран, абсорбер;
  • радиатор с аккумулирующими ребрами;
  • верхняя часть из обычного стекла или поликарбоната.

Воздушный солнечный коллектор с аккумулятором тепла

В конструкцию коллектора входят вентиляторы. Основное предназначение: нагнетание нагретого воздуха в жилые помещения. В процессе работы вентиляторов создается принудительная конвекция, за счет которой холодные воздушные массы поступают в блок коллектора.

Принцип обогрева и его эффективность

Абсорберы воздушных коллекторов делают черного цвета, для увеличения интенсивности нагрева под воздействием солнечного излучения. Температура воздуха в коллекторе достигает 70-80°С. Тепла с избытком хватает для полноценного обогрева помещений небольшой площади.

Принцип действия воздухонагревателя следующий:

  • воздух закачивается с улицы в корпус коллектора принудительным способом;
  • внутри блока установлены абсорберы, отражающие тепло, поднимающие температуру внутри ящика до 70-80°С;
  • происходит нагрев воздуха;
  • разогретые воздушные массы принудительно нагнетаются в отапливаемые помещения.

Воздушный солнечный коллектор с аккумулятором тепла

В заводских моделях обеспечение циркуляции воздуха осуществляется при помощи вентиляторов, подключенных к солнечным батареям. Как только ультрафиолетовое излучение становится достаточно интенсивным, чтобы выработать некоторое количество электроэнергии, турбины включаются. Коллекторы начинают работать на обогрев. Зимой интенсивность излучения Солнца снижается.

Дом не сможет полностью функционировать на солнечном воздушном отоплении. Воздухонагреватели используются как дополнительный источник тепла. При правильных расчетах одна установка (данные взяты из технических характеристик воздушных солнечных коллекторов Solar Fox) обеспечит следующую экономию, за отопительный сезон:

  • газ до 315 м³;
  • дрова до 3,9 м³.

Воздушный солнечный коллектор с аккумулятором тепла

Система солнечного воздушного обогрева компенсирует около 30% необходимого для здания тепла. Полная окупаемость достигается в течение 2-3 лет. Если учесть, что принцип работы связан с использованием установки и для кондиционирования воздуха, а в течение года вырабатывается около 4000 кВт, целесообразность использования становится еще очевиднее.

В странах ЕС широкое распространение получило конструкторское решение «солнечная стена». Конструкция заключается в следующем:

  • в здании одна из стен изготавливается из аккумулирующего материала;
  • перед панелью устанавливается стеклянная перегородка;
  • в течение дня тепло аккумулируется, после чего отдается в помещение ночью.

Для усиления конвекции, солнечный коллектор делается не во всю стену. Вверху и внизу предусматривают раздвижные шторки.

Воздушный солнечный коллектор с аккумулятором тепла

Солнечный коллектор — водяной или воздушный

Каждый из нагревателей эффективен, отличается только основное предназначение и принцип работы:

  • Водяной коллектор — применяется для обеспечения потребностей в ГВС и низкотемпературных систем теплых полов. Эффективность работы в зимний период существенно снижается. Вакуумные и панельные коллекторы косвенного нагрева, подсоединенные к буферной емкости, продолжают аккумулировать тепло в течение всего года. Главный недостаток, высокая стоимость гелиоколлектора, монтажа и обвязки.
  • Воздушный вентиляционный коллектор — отличается простой конструкцией и устройством, которое при желании можно изготовить самостоятельно. Основное предназначение: обогрев помещений. Конечно, существуют схемы, позволяющие использовать полученное тепло для ГВС, но при этом эффективность воздушных коллекторов падает практически вдвое. Преимущества: низкая стоимость комплекта и установки.

Солнечные воздушные системы отопления работают только днем. Нагрев воздуха начинается даже в пасмурную погоду, при сильной облачности и во время дождя. Работа воздухонагревателей зимой не прекращается.

Как и из чего сделать воздушный коллектор

Главное достоинство солнечных воздухонагревателей, в простоте конструкции. При желании можно сделать самодельное солнечное воздушное отопление частного дома, затратив на это минимум средств.

Для начала потребуется сделать расчеты производительности, затем подобрать тип конструкции и выбрать материалы для изготовления. Корпус и абсорберы можно изготовить из подручных средств, существенно сэкономив бюджет.

Как сделать расчёты коллектора

Воздушный солнечный коллектор с аккумулятором теплаВычисления выполняются следующим образом:

  • каждый м² от площади коллектора даст 1,5 кВт/час тепловой энергии, при условии, что будет солнечная погода;
  • для полноценного обогрева помещения требуется 1 кВт тепловой энергии на 10 м².

Приблизительный расчет мощности покажет, что для отопления жилого дома на 100 м² необходимо установить коллекторы общей площадью 7-8 м².

Для обеспечения максимальной производительности надо определить сторону дома с максимальной интенсивностью ультрафиолетового излучения. Практика показывает, что оптимальное место для установки — это скат кровли или южная стена здания.

Типы конструкции коллектора

В домашних условиях выполняют сборку неразборного корпуса. Это деревянный ящик с абсорбером, радиатором и верхним прозрачным экраном. При изготовлении используют подручные средства: профнастил, алюминиевые пивные банки, обычное стекло.

Материалы для изготовления коллектора

Воздушный солнечный коллектор с аккумулятором тепла

Для нагнетания воздуха в отапливаемые помещения устанавливают 2-4 вентилятора. Подойдут кулеры, снятые со старого компьютера.


Установка и подключение воздушного коллектора

Для монтажа воздухонагревателей нужно подготовить поверхность стены, сделав 4 отверстия под воздуховоды. Внутри здания гофрированные трубы разводят по комнатам, направляя в сторону пола.

Самодельные воздушные солнечные коллекторы для отопления дома подключаются к электросети, через трансформатор. При наличии навыков в качестве источника питания можно установить аккумулятор на солнечных батареях.

Воздушный солнечный коллектор с аккумулятором тепла

Теплоэффективность изготовленных своими руками воздухонагревателей существенно ниже, чем у заводской продукции. При отсутствии специальных навыков лучше использовать готовые модули. Как показывают реальные отзывы о коллекторах, оптимальный вариант для покупки из представленных на отечественном рынке: Solar Fox, Солнцедар и ЯSolar-Air.

Воздушный солнечный коллектор с аккумулятором тепла

Воздухонагреватели не используются в качестве основного источника тепла и выполняют исключительно вспомогательную функцию. В домах с солнечными воздушными коллекторами изначально устанавливают котел, покрывающий потребности в отоплении на 100%.

Воздушный солнечный коллектор с аккумулятором тепла

При грамотных расчетах и интенсивной эксплуатации, вложения окупятся в течение 1-2 лет. В случае самостоятельного изготовления коллектора, затраты вернутся уже в середине первого отопительного сезона.


Пошаговая инструкция изготовления воздушного коллектора

Воздушный солнечный коллектор с аккумулятором тепла

Воздушный солнечный коллектор с аккумулятором тепла

Воздушный солнечный коллектор с аккумулятором тепла

Воздушный солнечный коллектор с аккумулятором тепла

Воздушный солнечный коллектор с аккумулятором тепла

Воздушный солнечный коллектор с аккумулятором тепла

Воздушный солнечный коллектор с аккумулятором тепла

Воздушный солнечный коллектор с аккумулятором тепла

Воздушный солнечный коллектор с аккумулятором тепла

Воздушный солнечный коллектор с аккумулятором тепла

Воздушный солнечный коллектор с аккумулятором тепла

Воздушный солнечный коллектор с аккумулятором тепла

Воздушный солнечный коллектор с аккумулятором тепла

Воздушный солнечный коллектор с аккумулятором тепла

Воздушный солнечный коллектор с аккумулятором тепла

Воздушный солнечный коллектор с аккумулятором тепла

Изготовление солнечного воздухогрейного коллектора из квадратной трубы:

Из нескольких теплоаккумулирующих сред для теплоаккумуляторов воздушного типа наиболее известными и употребимыми являются камни. Хотя применение этого материала кажется сравнительно дешевым и легким решением, однако, это не всегда так. Наиболее существенным преимуществом камней является их низкая стоимость (если камней действительно много).

В зависимости от конструкции и размеров отсека для камней могут потребоваться камни размером до 100 мм. На 1 м 2 коллектора требуется 35. 180 кг камней из-за их малой теплоемкости. Огромное количество камней усложняет проблему их транспортировки и перегрузки, а также требует отсека, достаточного по размеру, чтобы вместить их. При 30% пустот объем камней, необходимый для аккумулирования того же количества тепла, что и бак с водой, должен быть в 2,5 раза больше.

Большая периметральная площадь этих отсеков-аккумуляторов влечет за собой более высокие строительные расходы и большие потери тепла. Потенциальная возможность более значительных потерь тепла из больших отсеков с камнями по сравнению с меньшими по размеру водяными баками, тем не менее, компенсируется сравнительно медленным естественным движением тепла через камни в отличие от постоянного движения воды внутри большого бака при изменении температуры (например, из-за потери тепла).

Одним из серьезных ограничений в использовании камней является недостаточность их универсальности как рабочих тел для других целей помимо аккумулирования тепла, они, например, не могут служить теплоносителем для подогрева воды, охлаждения и даже отопления жилого помещения. Один из немногих и наиболее распространенных способов приготовления горячей воды в этом случае заключается в установке небольшого (0,1. 0,4 м 3 ) неизолированного водяного бака между камнями. Теплообмен протекает медленно, но продолжается круглые сутки.

Методы солнечного охлаждения применимы тогда, когда камни удерживают прохладу для дальнейшего использования. Эту прохладу можно получить путем:

  • циркуляции холодного ночного воздуха;
  • воздуха, охлажденного ночной радиацией;
  • воздуха, охлажденного внепиковыми холодильными компрессорами.

Воздушные теплоаккумулирующие системы ограничивают способ передачи тепла окружающему пространству.

На рис. 1 показан купольный дом, спроектированный фирмой Тотал энвайронментал экшн, в котором отсек с камнями расположен в пределах помещения. Передача тепла из отсека в помещение происходит медленно путем естественной конвекции из комнаты в нижнюю часть отсека и оттуда через верх, а при необходимости, при помощи небольших вспомогательных вентиляторов (куполообразная форма была выбрана заказчиком, а отдельно стоящий солнечный коллектор указывает на ограничения, накладываемые строительным участком).

Воздушный солнечный коллектор с аккумулятором тепла
Воздушные солнечные коллекторы (расположенные отдельно) и теплоаккумулятор с твердой засыпкой в купольном доме:
A — панели солнечного коллектора;
B — контейнер теплоаккумулятора с кирпичным или каменным щебнем;
C — подземный изолированный канал для подачи воздуха

Местоположение теплового аккумулятора с камнями может явиться серьезным ограничением в их использовании. Если теплоаккумулятор размещается в подвале здания, то расходы на сооружение отсека необязательно должны быть включены в общую стоимость системы солнечного теплоснабжения. Однако, если под тепловой аккумулятор отводится подвал, предназначенный для других целей, или жилое помещение, то стоимость сооружения такого отсека добавляется к стоимости системы. На рис. 2 показано использование контейнера-аккумулятора с засыпкой из камней в качестве архитектурного элемента здания. В доме Джорджа Лефа (Денвер, Колородо) этот способ применен довольно удачно. Однако из-за большого веса контейнеров или отсеков для камней под ними должны предусматриваться прочные фундаменты.

Воздушный солнечный коллектор с аккумулятором тепла
Засыпка, содержащаяся в вертикальном цилиндре из фиброкартона

На рис. 3 представлен разрез дома в Бостоне, выполненного по проекту фирмы Тотал энвайронментал экшн на средства фирмы АИА Рисерч корп. Американского института архитекторов. Площадка для дома представляет собой крутой северный склон холма с высокими зданиями к югу. Солнечный коллектор устанавливается как можно выше, чтобы не попасть в тень от соседних зданий. Вследствие своих больших размеров и массы теплоаккумулирующий отсек с камнями находится на нижнем этаже здания.

Воздушный солнечный коллектор с аккумулятором тепла
Разрез солнечного дома (Бостон)

В проекте предусмотрен довольно простой способ передачи тепла к отсеку и от него. На рис. 4, где показана схема солнечной системы, теплый воздух из солнечного коллектора поступает в верхнюю часть отсека. Он затягивается внутрь, выходит снизу и поступает обратно в коллектор. Для обогрева дома прохладный воздух поступает в нижнюю часть отсека и нагревается по мере подъема между камнями. Самые теплые камни наверху нагревают воздух до наибольшей степени. На рис. также показан цикл отопления на жидком топливе, в котором комнатный воздух обходит отсек с камнями. Обычно, аккумуляторный отсек не должен нагреваться отопителем, за исключением случаев, когда он располагается внутри жилого помещения.

Воздушный солнечный коллектор с аккумулятором тепла
Схема системы солнечного теплоснабжения для дома в Бостоне;
A — режим поглощения солнечной энергии. Воздух поступает через дно солнечного коллектора и выходит через верх. Нагретый воздух подается вниз, проходя через тепловой аккумулятор с камнями и нагревая его, и возвращается обратно в коллектор;
B — режим отопления помещения. Воздух засасывается из жилого помещения и поступает в нижнюю часть теплоаккумулятора. При прохождении через камни он нагревается и поступает обратно в жилое помещение;
C — режим дублирующего отопления. Отопитель, работающий на жидком топливе, нагревает воздух, поступающий из жилого помещения через приточную камеру в нижней части теплового аккумулятора. Нагретый воздух поступает в жилое помещение через верхнюю камеру теплоаккумулятора;
D — бак для приготовления горячей воды находится внутри теплоаккумулирующей среды, которая играет роль или нагревателя, или подогревателя в зависимости от уровня температуры теплоаккумулятора

Одна из важных причин того, что теплый воздух подается из солнечного коллектора в верхнюю часть отсека, заключается в стремлении обеспечить температурную стратификацию. Это дает возможность нагревать комнатный воздух до наивысшей возможной температуры при помощи самых теплых камней, находящихся в верхней части отсека. Если теплый воздух будет поступать через низ отсека, даже без перемещения внутри него, то тепло из нижней части распределится равномерно по всему отсеку, что вызовет в нем общее понижение температуры. Подача комнатного воздуха в то же место, что и теплого воздуха из коллектора, будет способствовать этому выравниванию тепла по отсеку, а не нагреву воздуха в целях отопления здания.

Форма отсека теплового аккумулятора имеет особое значение при использовании камней в качестве теплоаккумулирующей среды. Вообще, чем больше расстояние, которое воздуху требуется пройти через камни, тем больше должен быть размер камней для уменьшения перепада давления и снижения необходимой мощности вентилятора. Например, если отсек представляет собой высокий цилиндр (см. рис. 2), то требуются камни большего размера. Если высота цилиндра более 2,5 м, то размер камней должен быть по крайней мере 50 мм; для более высоких цилиндров размер камней должен быть еще больше. Для приземистых, горизонтальных отсеков, которые обычно устанавливаются в подвалах, может подойти гравий диаметром 25. 50 мм (рис. 5).

Воздушный солнечный коллектор с аккумулятором тепла
Форма отсека теплового аккумулятора:
а — вертикальный отсек;
1 — теплый воздух из солнечного коллектора; 2 — размер камней в поперечнике 50. 100 мм; 3 — холодный воздух к коллектору;
б — горизонтальный отсек;
1 — теплый воздух из солнечного коллектора; 2 — холодный воздух к коллектору; 4 — гравий в поперечнике 25. 50 мм; 5 — теплый воздух к дому; 6 холодный воздух из дома

Предлагаемые выше размеры в большей степени зависят от скорости проходящего через камни воздуха. Чем меньше скорость воздуха, тем мельче должны быть камни и тем толще их слой. По сути дела, увеличение перепада давления проходящего через камни воздушного потока прямо пропорционально увеличению скорости воздуха. Разумеется, чем меньше камни в поперечнике, тем больше суммарная площадь поверхности камней, которая получает тепло от воздуха. Вообще, камни или булыжники должны быть достаточно большими, чтобы поддерживать низкий перепад давления при достаточно хорошем теплообмене.

В теплоаккумулирующих системах воздушного типа можно также использовать небольшие контейнеры для воды, которые можно разместить на стеллажах, полках или каким-либо другим способом, чтобы дать воздуху возможность беспрепятственно обтекать их. Такими контейнерами могут являться пластмассовые, стеклянные, алюминиевые емкости, бутыли, банки. Проблема укладки или размещения контейнеров решается разными путями, но, пожалуй, наиболее успешным является установка их на поддоны с последующим продуванием воздуха по горизонтали между поддонами (рис. 6).

Воздушный солнечный коллектор с аккумулятором тепла
Отсек теплового аккумулятора для воздушных систем, в которых применяются небольшие контейнеры с водой:
1 — поступление воздушного потока; 2 — контейнеры с водой; 3 — полки; 4 — выход воздушного потока; 5 — отсек аккумулятора

Можно разместить небольшие контейнеры между балками перекрытий (пустоты здесь выступают в качестве воздушных коробов) или использовать вертикальные пустоты теплоаккумулятора, служащие перегородками между помещениями или элементами наружнымх стен. И опять, при размещении теплоаккумулятора внутри отапливаемого помещения все потери тепла из него поступают в здание. На рис. 7 показан разрез дома, спроектированного фирмой «Тотал энвайронментал экшн» (Миннеаполис, Массачусетс). В этом проекте воздух, циркулируя в замкнутом контуре, проходит вверх через вертикальный, обращенный на юг солнечный коллектор, а затем опускается вниз через вертикальный объем, заполненный небольшими контейнерами с водой.

Воздушный солнечный коллектор с аккумулятором тепла
Вертикальные воздушные солнечные коллекторы и водяной теплоаккумулятор контейнерного типа в Джиллис-хаус:
1 — отсек; 2 — солнечный коллектор

Стену такой конструкции нелегко приспособить для камней, и в этом заключается одно из главных преимуществ контейнеров с водой. Другое преимущество в том, что для воды требуется меньший объем пространства, для аккумуляции того же количества тепла, что и камни. Утечка воды вряд ли вызовет проблемы, поскольку в одном месте протечки потеря воды составит не более нескольких литров.

Воздушный солнечный коллектор с аккумулятором тепла
Проект солнечного дома для Миннеаполиса:
1 — комната отдыха; 2 — общая комната; 3 — спальня; 4 — тепловой аккумулятор; 5 — солнечный коллектор для приготовления горячей воды; 6 — солнечный коллектор; 7 — столовая; 8 — гараж

По контракту с АИА Рисерч корп. фирма Тотал энвайронментал экшн использовала саму конструкцию дома для аккумулирования тепла. Система, показанная на рис. 8, разработана для Миннеаполиса.

Оцените статью