Модуль упругости кирпичной кладки т м2

При строительстве обязательно учитывается модуль упругости кирпичной кладки. Он позволяет узнать нагрузку, которую выдерживает здание. Величина высчитывается по формуле. Но эту характеристику влияет марка бетона, прочность цемента и тип кладки. Но не рекомендуется полностью доверяться усредненным табличным данным, ведь каждое здание находится в своих температурных условиях.

Модуль упругости кирпичной кладки т м2

Общие сведения

Модуль упругости называется еще модулем деформации кирпичной кладки.

Под этим термином подразумевает способность материалов искажаться под воздействием краткого или длительного давления на него. Но это не постоянная характеристика, так как после исчезновения напряжения пропадает сразу же или через определенный срок. Модуль упругости кирпича изменяется в зависимости от материала и высчитывается по формуле Е0=аRu, если кирпичная кладка неармированная и E0=aRsku, если армированная.

В этом выражение «а» обозначает упругую характеристику. Это устоявшиеся табличные данные. R — сопротивление кирпичной конструкции во время воздействия на нее, k — устоявшийся коэффициент, который ищут в таблице, а Ru — усредненный предел прочности. Кроме этого, выделяют формулы для продольного (R=kR+Ru/100) и сетчатого армирования (R=kR+2Ru/100).

Таблица значений коэффициента:

Читайте так же:  Резьбовое соединение газовых труб

Вернуться к оглавлению

Почему рассчитывают?

Кирпичная кладка применяется для строительства жилых и рабочих домов. Она считается одним из самых надежных материалов для создания зданий. Но для построения необходимо провести замеры и рассчитать упругую характеристику. Это помогает определить, какую нагрузку выдерживает строение и как долго оно сможет простоять. Показатель важен при строительстве многоэтажных домов.

От чего зависит?

Упругая характеристика кладки изменяется по таким причинам:

  • марка бетона;
  • прочность цементной смеси;
  • тип кладки.

Каждый класс и марка имеют определенную плотность. Это помогает определить, какую нагрузку может выдержать материал. Выделяют 9 типов кладки. Эта свойство зависит от марки бетона и определяет, какую упругость выдерживает строение. Но не стоит полностью доверять расчетам. Специалисты-рабочие ориентируются на опыт и их интуицию, так как при строительстве возможны погрешности. Постройки находятся в разных температурных условиях, на них могут повлиять различные нестандартные ситуации. Потому нежелательно полностью зависеть от данных из таблиц. Обязательно во внимание берутся модули сдвига деформации при усадке, коэффициенты по линейному расширению и величины трения по плоскости.

Табличные значения

Модуль упругости кладки из кирпича зависит от класса бетона и ее подтипа. В этой таблице приведены наиболее распространенные виды, марки и прочность растворов. При строительстве рекомендуется обратить внимание на модель деформации. Это производная от упругости. Он рассчитывается по формуле Е=0,5Е0. Если надо рассчитать искажение под действием природных условий, то берется выражение Е=0,8Е0.

Модуль упругости кирпичной кладки т м2

Расчетная и экспериментальная оценки динамических характеристик здания с безригельным каркасом с использованием ВК SCAD Office

Скачать статью в формате PDF — 725 Кбайт

CADmaster » CADmaster №5(50) 2009 (дополнительный) » Архитектура и строительство Расчетная и экспериментальная оценки динамических характеристик здания с безригельным каркасом с использованием ВК SCAD Office

Введение

За последнее время в Иркутске было возведено большое количество жилых домов в конструкциях серии 1.120с. Серия представляет собой сборный железобетонный безригельный каркас с применением высокопрочных предварительно напряженных канатов в уровне перекрытий. В 2008 году Институт земной коры СО РАН провел инженерно-техническое обследование шестидесяти блок-секций этой серии. Предварительно были проанализированы результаты динамических расчетов, выполненных различными организациями, которые осуществляют проектирование блок-секций в конструкциях указанной серии. Анализ выявил значительный разброс расчетных периодов собственных колебаний идентичных блок-секций: интервал составил от 0,4 до 1,0 секунды. От достоверности расчетного значения периода колебаний напрямую зависит величина коэффициента динамичности и, следовательно, уровень расчетной сейсмической нагрузки на блок-секцию. В связи с этим было принято решение провести экспериментальные исследования динамических характеристик на одном из построенных объектов. Таким объектом стала 9-этажная блок-секция по улице Баррикад.

Опытный объект представляет собой «лучевую» девятиэтажную блок-секцию с выраженной асимметрией плана типового этажа, с цокольным этажом и двухэтажной надстройкой. Основу каркаса обследуемого здания составляют конструктивные ячейки 4,2×4,2 м, образуемые колоннами и панелями перекрытия. Высота этажа 3,0 м. Высота здания от дневной поверхности составляет 33,0 м. В качестве несущих конструкций рамно-связевого каркаса используются сборные колонны, диафрагмы жесткости и ребристые плиты перекрытия с высотой ребер 200 мм и толщиной полки 60 мм. Сборные железобетонные колонны из тяжелого бетона класса В25 запроектированы сечением 400×400 мм. Диафрагмы жесткости представляют собой железобетонные панели толщиной 160 мм и также выполнены из тяжелого бетона класса В25. Следует отметить непропорциональную жесткость ребристых плит перекрытия по сравнению с принятыми сечениями колонн и толщиной диафрагм жесткости. Стыки колонн приняты в соответствии с модернизированной конструкцией, где устранены некоторые недостатки прототипа — стыка «штепсельного» типа.

Модуль упругости кирпичной кладки т м2

Уязвимым местом обеих конструкций стыка является риск возникновения «плоскости скольжения» в уровне верха плит перекрытия через каждые три монтажных яруса. Если горизонтальный шов между торцами стыкуемых колонн ненадежно заполнен раствором инъецирования, в этом сечении будут работать на срез только четыре арматурных стержня колонны диаметром 25−28 мм, поскольку проектный размер «выступа» верха колонны над плоскостью перекрытия 30 мм находится в пределах точности монтажа каркаса. Конструкции лестничных клеток запроектированы с применением сборных железобетонных маршей. Наружные стены представляют собой многослойную конструкцию: внутренний слой из кирпичной кладки толщиной 250 мм, наружный — из кирпичной кладки толщиной 120 мм и слой утеплителя толщиной 150 мм. Внутренние стены и перегородки — кирпичные, их толщина соответственно составляет 250 и 120 мм. Стены шахты лифта — кирпичная кладка толщиной 250 мм. Наружные стены цокольного этажа — сборные железобетонные панели толщиной 300 мм из тяжелого бетона класса В15.

Сейсмичность площадки строительства составляет 8 баллов.

Методика проведения инструментальных измерений динамических характеристик здания при микросейсмических воздействиях

Здание представляет собой систему с дискретными массами, которая обладает фильтрационными свойствами. Такая система способна пропускать упругие волны с определенными длинами, зависящими от конструкции и размеров здания. Под воздействием микросейсмических колебаний грунта в здании возникают установившиеся микроколебания. На этом основана методика определения динамических характеристик зданий. В процессе обработки производятся спектрально-корреляционные преобразования регистрируемых сигналов. Указанная методика известна как «метод стоячих волн» [8].

Для регистрации микросейсмических колебаний использовались восемь трехканальных автономных цифровых станций ANG-06. Все станции были синхронизированы с абсолютным временем по сигналам GPS.

С помощью спектрально-корреляционного анализа выделены формы собственных колебаний в диапазоне частот 2,637−9,08 Гц. Все зарегистрированные формы колебаний характеризуются выраженной крутильной компонентой. При инструментальных измерениях, помимо периодов колебаний, регистрировались параметры затухания и формы колебаний здания (использовалась передвижная ИСС).

В процессе обследования выполнены трехкомпонентные наблюдения в 320 точках каркаса. Результаты позволили определить все основные характеристики динамической модели здания.

Сравнительный анализ расчетных и инструментальных динамических характеристик исследуемого здания

С помощью программного комплекса SCAD Office версии 11.1 были проведены динамические расчеты опытной блок-секции. Формирование конечноэлементной модели исследуемого здания выполнено при помощи препроцессора Форум. При моделировании конструктивных элементов здания использовались конечные элементы: тип 5 (пространственный стержень); тип 42, 44 (3-, 4-угольные КЭ-оболочки) и 55 КЭ (упругая связь). Количество элементов расчетной модели — 26 981; количество узлов — 12 851.

При формировании расчетной модели здания авторы столкнулись с двумя основными проблемами:

  1. учет податливости соединения диафрагм жесткости с колоннами каркаса;
  2. учет жесткости кирпичного заполнения каркаса.

Существует несколько вариантов учета податливости соединения сборных конструкций при вычислениях динамических характеристик каркаса с заполнением. Один из них заключается в искусственном уменьшении жесткости самих конструкций путем снижения модуля упругости с помощью понижающих коэффициентов.

В 2004 году Институт земной коры совместно с ЦНИИСК им. В.А. Кучеренко и ИрГТУ провел вибрационные испытания каркаса серии 1.120с, которые показали, что наибольшие повреждения получили не сами диафрагмы, а их шпоночные соединения с элементами каркаса и сварные стыки. Поэтому при формировании адекватной конечно-элементной модели основное внимание уделялось оценке жесткостей не столько диафрагм, сколько их соединений с элементами каркаса.

При расчетах податливость закладных деталей учитывалась с помощью конечного элемента КЭ 55 (упругой связи). При изменении линейной жесткости упругих связей в диапазоне от 9×108 т до 1 т наблюдались изменения форм и периодов колебаний здания (таблица 1). В результате установлено, что решающую роль в формировании жесткости динамической модели каркаса играет подбор жесткостей закладных деталей соединения диафрагм с элементами каркаса.

Таблица 1. Влияние жесткости упругих связей на динамические характеристики каркаса

Модуль упругости кирпичной кладки т м2

Жесткость 55-го элемента Приведенный модуль упругости кирпичной кладки, т/м 2 Период, с 1-я форма колебаний здания
1 200000 0,568
2 200000 0,754

Модуль упругости кирпичной кладки т м2

Крепление диафрагм жесткости, а также цокольных железобетонных панелей моделировалось с помощью стержневых КЭ:

  • L100×63×8 (ГОСТ 8510−86*) — закладная деталь в верхней части цокольной железобетонной панели;
  • 100×8 (ГОСТ 19903−74) — закладная деталь в нижней части цокольной железобетонной панели;
  • 200×10 (ГОСТ 19903−74) — закладная деталь диафрагмы жесткости.

Вторая проблема заключалась в учете приведенной жесткости кирпичного заполнения. Были выполнены динамические расчеты с изменением модуля упругости кирпичного заполнения от минимальной величины до расчетного значения, соответствующего случаю монолитного (то есть абсолютно жесткого) крепления кирпичного заполнения к элементам каркаса.

Анализ расчетных динамических характеристик здания (таблица 2) позволил подобрать приведенное значение модуля упругости кирпичного заполнения с точки зрения совпадения расчетных данных с результатами инструментальных измерений:

Таблица 2. Влияние приведенной жесткости заполнения на динамические характеристики каркаса

Модуль упругости кирпичной кладки т м2

Жесткость 55-го элемента Приведенный модуль упругости кирпичной кладки, т/м 2 Период, с 1-я форма колебаний здания
1 1000 1,157
2 450000 0,441

Модуль упругости кирпичной кладки т м2

3 200000 0,568

Модуль упругости кирпичной кладки т м2

  • для внутренних кирпичных стен толщиной 250 мм E усл кл =»» 2·105 т/м2;
  • для наружных стен слоистой конструкции E усл кл =»» 2,5·105 т/м2.

Как результат подбора жесткости кирпичного заполнения и учета податливости закладных деталей получены динамические характеристики здания, согласующиеся с результатами экспериментальных исследований (таблица 3).

Таблица 3. Результаты конструктивного расчета каркаса «лучевой» блок-секции

Первая форма колебаний здании, полученная при инструментальных измерениях
Период Т =»» 0,397 с
Первая форма колебаний здания, полученная при расчете с эквивалентными жесткостями закладных деталей и кирпичного заполнения.
Период Т- 0,476 с

Модуль упругости кирпичной кладки т м2

Модуль упругости кирпичной кладки т м2

Следует отметить, что как расчетный анализ, так и инструментальные измерения (микродинамический уровень воздействия, при котором конструкции заведомо работают в упругой стадии) выполнены в рамках линейно-упругой модели и, следовательно, их сравнительный анализ является вполне корректным. Его результаты позволяют объяснить появление в проектной практике нереально больших расчетных периодов собственных колебаний ( Т =»» 1,0 с), что приводит к занижению уровня расчетной сейсмической нагрузки. Причина этих проектных дефектов кроется в использовании неадекватных расчетных моделей зданий. При формировании таких моделей игнорируется учет жесткости всех конструкций сооружения, в том числе заполнения каркаса — наружных и внутренних кирпичных стен и перегородок. Таким образом, фактическая сейсмостойкость «лучевых» блок-секций не соответствует расчетной 8-балльной сейсмичности площадки строительства. Дефицит их сейсмостойкости может достигать одного балла. При этом следует учитывать, что «балл» является понятием целочисленным.

Оценка прочности конструктивных элементов безригельного каркаса и узлов их соединения

Расчеты рассматриваемого объекта выполнены на сейсмичность 7, 8 и 9 баллов. Все расчеты проводились на нормативные нагрузки (без учета временных), то есть реально представленные на объекте в момент проведения исследований. Далее были учтены расчетные коэффициенты, а также временные нагрузки и произведен расчет армирования конструкций в обычной проектной стадии. Сравнительные данные по максимальному армированию элементов каркаса при 8- и 9-балльном воздействии представлены в таблице 4.

Таблица 4. Результаты конструктивного расчета каркаса «лучевой» блок-секции

Сейсмичность Колоны
Площадь арматуры As 2 см 2 Кол-во и диаметр арматуры Площадь арматуры As 2 см 2 Диаметр и шаг арматуры
Вертикальная Горизонтальная Вертикальная Горионтальная
8 баллов 19,76 4∅25(-В нижних ярусах 4∅28-) 5,08 4,08 ∅12, шаг 200 ∅12, шаг 200
9 баллов 47,62 4∅32(-В нижних ярусах 4∅40-) 19,64 11,64 ∅25, шаг 200 ∅18, шаг 200

Анализ данных таблицы 4 показывает, что при сейсмическом воздействии 8 баллов армирование основных несущих элементов каркаса «лучевой» блоксекции соответствует расчетным показателям и его конструктивная реализация не вызывает затруднений. При 9-балльном воздействии расчетное армирование диафрагм жесткости следует признать чрезмерным из-за значительного насыщения изделия арматурой. Кроме того, при модифицированной конструкции стыка колонн, принятой в проекте, размещение арматуры диаметром 40 мм в канале диаметром 50 мм с учетом неизбежных погрешностей монтажа приведет к затруднениям при выполнении операции инъецирования каналов, от качества которой в существенной мере зависит надежность конструкции стыка колонн.

Наиболее напряженным конструктивным узлом каркаса является монолитная железобетонная шпонка понизу диафрагмы жесткости (ДЖ). Она находится под воздействием нормальных усилий сжатия-растяжения N и соответствующих усилий сдвига T по горизонтальному шву.

Прочность шпонки определялась в соответствии с нормативными документами [9] и [10] по формулам, приведенным ниже. При этом рассматривались три случая.

    Сопротивление сдвигу Vs в условиях сжатия N Nc — действующая на стык сжимающая сила; As — площадь сечения ненапрягаемой арматуры; Rsw — расчет ное сопротивление поперечной арматуры растяжению; Vk,b — сопротивление сдвигу бетонной шпонки; Rbt — расчетное сопротивление бетона осевому растяжению для предельных состояний первой группы; Ash — площадь сечения шпонки.

Основной вклад в несущую способность шпонки на сдвиг дает учет сил трения в горизонтальном шве, создаваемого за счет усилий сжатия при значении коэффициента трения бетона по бетону, который с учетом сейсмического воздействия принят равным η=»0,7×0,7″ ≈ 0,5. Корректное использование этой формулы предполагает четкую передачу усилий сжатия через растворный шов между диафрагмами жесткости. На практике же монтаж диафрагм зачастую ведется «насухо» — по маякам, без заполнения горизонтального шва раствором, что вносит существенные коррективы в расчетную схему каркаса.

  1. Сопротивление сдвигу V o s при N =»» 0.

Для определения V o s в приведенных формулах принимается Nc =»» 0.

Данный случай является граничным. Несущая способность шпонки на сдвиг определяется работой на срез контурной арматуры и бетона шпонки на срез. Довольно близкой к этому случаю оказалась комбинация расчетных усилий для варианта растягивающих усилий в шпонке при 7 баллах (таблица 5).

Таблица 5

Вид напряженного состояния Вид усилия Величина усилия в тс при сейсмическом воздействии (в баллах)
7 8 9
Сжатие Нормальное усилие N -85 -117 -181
соответ. усилие сдвига T 20 32 55
Растижение Нормальное усилие N +3 +22 +86
соответ. усилие сдвига T 2 16 40
  1. Сопротивление сдвигу Vs в условиях растяжения N =»» 0.

Физический смысл этой формулы заключается в способности контурной арматуры работать на срез до тех пор, пока не исчерпаны ее резервы сопротивления растяжению. Однако с увеличением растягивающего усилия в шпонке эти резервы снижаются в соответствии с квадратичной зависимостью и несущая способность шпонки на сдвиг обращается в нуль.

Проверка несущей способности монолитной железобетонной шпонки на сдвиг показала, что по прочности она не удовлетворяет комбинациям расчетных усилий при 8- и 9-балльных сейсмических воздействиях (в таблице 5 указанные комбинации выделены красным цветом).

Таким образом, анализ результатов конструктивных расчетов каркаса «лучевой» блок-секции показывает, что по условиям прочности основных несущих элементов каркас удовлетворяет нормативным требованиям в случаях сейсмических нагрузок 7 и 8 баллов. В то же время условия прочности наиболее напряженного конструктивного узла каркаса (монолитных железобетонных шпонок диафрагм жесткости) удовлетворяются лишь для 7 баллов.

Основная причина этого проектного дефекта заключается в недостаточном количестве диафрагм жесткости при принятом несимметричном плане типового этажа блок-секции. Существенным фактором также является ограниченная способность монолитных железобетонных шпонок воспринимать усилия сдвига в случае вертикальных растягивающих усилий, возникающих в диафрагмах жесткости. Контроль качества замоноличивания шпонок выявил также характерные дефекты их исполнения в натуре: несовпадение арматурных выпусков из диафрагм жесткости и образование щели поверх шпонок из-за оседания монолитного бетона, что ставит под сомнение их реальную надежность.

Эти выводы полностью согласуются с результатами натурных испытаний фрагмента безригельного каркаса серии 1.120с (Иркутск, 2004 г.), при которых 90% шпонок в диафрагмах жесткости получили повреждения 4−5 степени (разрушение) по шкале MSK-64 [11]. Что касается сварных соединений диафрагм жесткости с колоннами, то при испытаниях фрагмента каркаса был зафиксирован срез сварного шва лишь в отдельных узлах — в 5% случаев. Тем не менее, прочность сварных соединений также нуждается в дополнительной проверке, особенно с точки зрения надежности анкеровки закладных деталей в бетоне.

3.8. Расчетные сопротивления сжатию бутобетона (невибрированного) приведены в табл. 9.

, МПа (кгс/ ), сжатию бутобетона (невибрированного) при классе бетона

С рваным бутовым камнем марки:

50 или с кирпичным боем

Примечание. При вибрировании бутобетона расчетные сопротивления сжатию следует принимать с коэффициентом 1,15.

3.9. Расчетные сопротивления сжатию кладки из силикатных пустотелых (с круглыми пустотами диаметром не более 35 мм и пустотностью до 25 %) кирпичей толщиной 88 мм и камней толщиной 138 мм допускается принимать по табл. 2 c коэффициентами:

на растворах нулевой прочности и прочности 0,2 МПа (2 кгс/ ) — 0,8;

на растворах марок 4, 10, 25 и выше — соответственно 0,85, 0,9 и 1.

3.10. Расчетные сопротивления сжатию кладки при промежуточных размерах высоты ряда от 150 до 200 мм должны определяться как среднее арифметическое значений, принятых по табл. 2 и 5, при высоте ряда от 300 до 500 мм — по интерполяции между значениями, принятыми по табл. 4 и 5.

3.11(К). Расчетные сопротивления кладки сжатию, приведенные в табл. 2 — 8, следует умножать на коэффициенты условий работы , равные:

а) 0,8 — для столбов и простенков площадью сечения 0,3 и менее;

б) 0,6 — для элементов круглого сечения, выполняемых из обыкновенного (нелекального) кирпича, неармированных сетчатой арматурой;

в)(К) 1,1 — для крупных блоков и камней, изготовленных из тяжелых бетонов и из природного камня ( 1800 кг/ );

0,9 — для кладки из блоков и камней из автоклавных ячеистых бетонов и из силикатных бетонов классов по прочности выше В25;

0,8 — для кладки из блоков и камней из крупнопористых бетонов и из неавтоклавных бетонов. Виды ячеистых бетонов принимают в соответствии с ГОСТ 25485-82.

г) 1,15 — для кладки после длительного периода твердения раствора (более года);

д) 0,85 — для кладки из силикатного кирпича на растворе с добавками поташа;

е) для зимней кладки, выполняемой способом замораживания, — на коэффициенты условий работы по табл. 33.

3.12. Расчетные сопротивления сжатию кладки из крупных пустотелых бетонных блоков различных типов устанавливаются по экспериментальным данным. При отсутствии таких данных расчетные сопротивления следует принимать по табл. 4 с коэффициентами:

0,9 при пустотности блоков 5 %

где процент пустотности определяется по среднему горизонтальному сечению.

Для промежуточных значений процента пустотности указанные коэффициенты следует определять интерполяцией.

3.13. Расчетные сопротивления сжатию кладки из природного камня, указанные в табл. 4, 5 и 7, следует принимать с коэффициентами:

0,8 — для кладки из камней получистой тески (выступы до 10 мм);

0,7 — для кладки из камней грубой тески (выступы до 20 мм).

3.14. Расчетные сопротивления сжатию кладки из сырцового кирпича и грунтовых камней следует принимать по табл. 7 с коэффициентами:

0,7 — для кладки наружных стен в зонах с сухим климатом;

0,5 — то же, в прочих зонах;

0,8 — для кладки внутренних стен.

Сырцовый кирпич и грунтовые камни разрешается применять только для стен зданий с предполагаемым сроком службы не более 25 лет.

3.15. Расчетные сопротивления кладки из сплошных камней на цементно-известковых, цементно-глиняных и известковых растворах осевому растяжению , растяжению при изгибе и главным растягивающим напряжениям при изгибе , срезу при расчете сечений кладки, проходящих по горизонтальным и вертикальным швам, приведены в табл. 10.

Рис. 1. Растяжение кладки по неперевязанному сечению

Рис. 2. Растяжение кладки по перевязанному сечению

Рис. 3. Растяжение кладки при изгибе по перевязанному сечению

Вид напряженного состояния

Расчетные сопротивления , МПа (кгс/ ), кладки из сплошных камней на цементно-известковых, цементно-глиняных и известковых pacтворах осевому растяжению, растяжению при изгибе, срезу и главным растягивающим напряжениям при изгибе при расчете сечений кладки, проходящих по горизонтальным и вертикальным швам

при марке раствора

1. По неперевязанному сечению для кладки всех видов (нормальное сцепление; рис. 1)

2. По перевязанному сечению (рис. 2):

а) для кладки из камней правильной формы

б) для бутовой кладки

3.По неперевязанному сечению для кладки всех видов и по косой штрабе (главные растягивающие напряжения при изгибе)

4.По перевязанному сечению (рис. 3):

а) для кладки из камней правильной формы

б) для бутовой кладки

5.По неперевязанному сечению для кладки всех видов (касательное сцепление)

6.По перевязанному сечению для бутовой кладки

Примечания: 1. Расчетные сопротивления отнесены по всему сечению разрыва или среза кладки, перпендикулярному или параллельному (при срезе) направлению усилия.

2. Расчетные сопротивления кладки, приведенные в табл. 10, следует принимать с коэффициентами:

для кирпичной кладки с вибрированием на вибростолах при расчете на особые воздействия — 1,4;

для вибрированной кирпичной кладки из глиняного кирпича пластического прессования, а также

для обычной кладки из дырчатого и щелевого кирпича и пустотелых бетонных камней — 1,25;

для невибрированной кирпичной кладки на жестких цементных растворах без добавки глины или извести — 0,75;

для кладки из полнотелого и пустотелого силикатного кирпича — 0,7, а из силикатного кирпича, изготовленного с применением мелких (барханных) песков, по экспериментальным данным;

для зимней кладки, выполняемой способом замораживания, — по табл. 33.

При расчете по раскрытию трещин по формуле (33) расчетные сопротивления растяжению при изгибе для всех видов кладки следует принимать по табл. 10 без учета коэффициентов, указанных в настоящем примечании.

3. При отношении глубины перевязки кирпича (камня) правильной формы к высоте ряда кладки менее единицы расчетные сопротивления кладки осевому растяжению и растяжению при изгибе по перевязанным сечениям принимаются равными величинам, указанным в табл. 10, умноженным на значения отношения глубины перевязки к высоте ряда.

3.16. Расчетные сопротивления кладки из кирпича и камней правильной формы осевому растяжению

, растяжению при изгибе , срезу и главным растягивающим напряжениям при изгибе при расчете кладки по перевязанному сечению, проходящему по кирпичу или камню, приведены в табл. 11.

Вид напряженного состояния

, МПа (кгс/ ), кладки из кирпича и камней правильной формы осевому растяжению, растяжению при изгибе, срезу и главным растягивающим напряжениям при изгибе при расчете кладки по перевязанному сечению, проходящему по кирпичу или камню, при марке камня

>

Оцените статью